A simple scoring system for breast MRI interpretation: does it compensate for reader experience?

被引:68
作者
Marino, Maria Adele [1 ,2 ]
Clauser, Paola [1 ,3 ]
Woitek, Ramona [1 ]
Wengert, Georg J. [1 ]
Kapetas, Panagiotis [1 ]
Bernathova, Maria [1 ]
Pinker-Domenig, Katja [1 ]
Helbich, Thomas H. [1 ]
Preidler, Klaus [4 ]
Baltzer, Pascal A. T. [1 ]
机构
[1] Med Univ Vienna, Vienna Gen Hosp, Div Mol & Gender Imaging, Dept Biomed Imaging & Image Guided Therapy, Floor 7F Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Univ Messina, Dept Biomed Sci & Morphol & Funct Imaging, Policlin Univ G Martino, Messina, Italy
[3] Univ Udine, Dept Med & Biol Sci, Inst Diagnost Radiol, Azienda Osped Univ,S Maria Misericordia, Udine, Italy
[4] Diagnosezentrum Meidling, Vienna, Austria
关键词
Breast cancer; MRI; Scoring system; Reader experience; Sensitivity and specificity; DIAGNOSTIC-ACCURACY; INTERPRETATION MODEL; LESIONS; ENHANCEMENT; VARIABILITY; CANCER; DIFFERENTIATION; CLASSIFICATION; LEXICON; BENIGN;
D O I
10.1007/s00330-015-4075-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To investigate the impact of a scoring system (Tree) on inter-reader agreement and diagnostic performance in breast MRI reading. This IRB-approved, single-centre study included 100 patients with 121 consecutive histopathologically verified lesions (52 malignant, 68 benign). Four breast radiologists with different levels of MRI experience and blinded to histopathology retrospectively evaluated all examinations. Readers independently applied two methods to classify breast lesions: BI-RADS and Tree. BI-RADS provides a reporting lexicon that is empirically translated into likelihoods of malignancy; Tree is a scoring system that results in a diagnostic category. Readings were compared by ROC analysis and kappa statistics. Inter-reader agreement was substantial to almost perfect (kappa: 0.643-0.896) for Tree and moderate (kappa: 0.455-0.657) for BI-RADS. Diagnostic performance using Tree (AUC: 0.889-0.943) was similar to BI-RADS (AUC: 0.872-0.953). Less experienced radiologists achieved AUC: improvements up to 4.7 % using Tree (P-values: 0.042-0.698); an expert's performance did not change (P = 0.526). The least experienced reader improved in specificity using Tree (16 %, P = 0.001). No further sensitivity and specificity differences were found (P > 0.1). The Tree scoring system improves inter-reader agreement and achieves a diagnostic performance similar to that of BI-RADS. Less experienced radiologists, in particular, benefit from Tree. The Tree scoring system shows high diagnostic accuracy in mass and non-mass lesions. The Tree scoring system reduces inter-reader variability related to reader experience. The Tree scoring system improves diagnostic accuracy in non-expert readers.
引用
收藏
页码:2529 / 2537
页数:9
相关论文
共 30 条
[1]   Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score [J].
Baltzer, Anja ;
Dietzel, Matthias ;
Kaiser, Clemens G. ;
Baltzer, Pascal A. .
EUROPEAN RADIOLOGY, 2016, 26 (03) :884-891
[2]   Lesion type and reader experience affect the diagnostic accuracy of breast MRI: A multiple reader ROC study [J].
Baltzer, Pascal A. T. ;
Kaiser, Werner Alois ;
Dietzel, Matthias .
EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (01) :86-91
[3]   A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography [J].
Baltzer, Pascal A. T. ;
Dietzel, Matthias ;
Kaiser, Werner A. .
EUROPEAN RADIOLOGY, 2013, 23 (08) :2051-2060
[4]   False-Positive Findings at Contrast-Enhanced Breast MRI: A BI-RADS Descriptor Study [J].
Baltzer, Pascal A. T. ;
Benndorf, Matthias ;
Dietzel, Matthias ;
Gajda, Mieczyslaw ;
Runnebaum, Ingo B. ;
Kaiser, Werner A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (06) :1658-1663
[5]   Classification of hypervascularized lesions in CE MR imaging of the breast [J].
Baum, F ;
Fischer, U ;
Vosshenrich, R ;
Grabbe, E .
EUROPEAN RADIOLOGY, 2002, 12 (05) :1087-1092
[6]   Assessing the degree of collinearity among the lesion features of the MRI BI-RADS lexicon [J].
Benndorf, Matthias ;
Baltzer, Pascal A. T. ;
Kaiser, Werner A. .
EUROPEAN JOURNAL OF RADIOLOGY, 2011, 80 (03) :E322-E324
[7]   Probability of malignancy for lesions detected on breast MRI: a predictive model incorporating BI-RADS imaging features and patient characteristics [J].
DeMartini, Wendy B. ;
Kurland, Brenda F. ;
Gutierrez, Robert L. ;
Blackmore, C. Craig ;
Peacock, Sue ;
Lehman, Constance D. .
EUROPEAN RADIOLOGY, 2011, 21 (08) :1609-1617
[8]  
Dietzel Matthias, 2012, Eur J Radiol, V81 Suppl 1, pS30, DOI 10.1016/S0720-048X(12)70012-8
[9]  
DOrsi C. J, 2013, ATLAS BREAST IMAGING
[10]   BI-RADS Lesion Characteristics Predict Likelihood of Malignancy in Breast MRI for Masses But Not for Nonmasslike Enhancement [J].
Gutierrez, Robert L. ;
DeMartini, Wendy B. ;
Eby, Peter R. ;
Kurland, Brenda F. ;
Peacock, Sue ;
Lehman, Constance D. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (04) :994-1000