Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery

被引:71
作者
Teng, Xiangguo [1 ]
Dai, Jicui [1 ]
Su, Jing [1 ]
Yin, Geping [2 ]
机构
[1] Harbin Inst Technol, Sch Marine Sci & Technol, Weihai 264209, Peoples R China
[2] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
关键词
All vanadium redox flow battery; Nafion; Membrane; Surfactant; COMPOSITE MEMBRANE; ELECTROCHEMICAL PROPERTIES; HYBRID MEMBRANE; FUEL-CELL; TRANSPORT; IONOMER; CRYSTALLINITY; IR;
D O I
10.1016/j.memsci.2014.11.014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fluorocarbon surfaclani (potassium nonafluoro-1-bulanesulfonale) is employed Lo prepare the Nafion/fluorocarbon (N/FC) membranes for all vanadium redox flow batteries (VRFB). N/FC membranes with different FC surfactant mass ratios were successfully prepared by a solution casting method. The addition of FC surfactant has effectively suppressed the vanadium ions permeability and improved the proton conductivity of Nation. The N/FC membrane with 5 wt% of FC surfactant (N/FC-5%) exhibits the highest ion selectivity (ratio of proton conductivity to permeability) of 2.0 x 10(6) S min cm(-3), which is 2.1 times higher than that of pure recast Nation (r-Nation) membrane (9.7 x 10(5) S min cm(-3)). Consequently, both coulombic efficiency (CE) and voltage efficiency (VE) of the VRFB with NIFC-5% membrane are higher than that of the VRFB with r-Nafion membrane. The average energy efficiency (product of CE and VE) of the VRFB with N/FC-5% membrane is 11% higher than that of the VRFB with r-Nafion at current density of 40-80 mA cm(-2). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 42 条
[1]   Stable fluorinated sulfonated poly(arylene ether) membranes for vanadium redox flow batteries [J].
Chen, Dongyang ;
Kim, Soowhan ;
Li, Liyu ;
Yang, Gary ;
Hickner, Michael A. .
RSC ADVANCES, 2012, 2 (21) :8087-8094
[2]   Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell [J].
Chen, Zhongwei ;
Holmberg, Brett ;
Li, Wenzhen ;
Wang, Xin ;
Deng, Weiqiao ;
Munoz, Ronnie ;
Yan, Yushan .
CHEMISTRY OF MATERIALS, 2006, 18 (24) :5669-5675
[3]   Thermal behavior of Nafion membranes [J].
de Almeida, SH ;
Kawano, Y .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1999, 58 (03) :569-577
[4]   TGA-FTi.r. investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites [J].
Deng, Q ;
Wilkie, CA ;
Moore, RB ;
Mauritz, KA .
POLYMER, 1998, 39 (24) :5961-5972
[5]   SMALL-ANGLE X-RAY-SCATTERING STUDY OF PERFLUORINATED IONOMER MEMBRANES .1. ORIGIN OF 2 SCATTERING MAXIMA [J].
FUJIMURA, M ;
HASHIMOTO, T ;
KAWAI, H .
MACROMOLECULES, 1981, 14 (05) :1309-1315
[6]   Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery [J].
Gao, Chao ;
Wang, NanFang ;
Peng, Sui ;
Liu, SuQin ;
Lei, Ying ;
Liang, XinXing ;
Zeng, ShanShan ;
Zi, HuiFang .
ELECTROCHIMICA ACTA, 2013, 88 :193-202
[7]   STRUCTURE AND RELATED PROPERTIES OF SOLUTION-CAST PERFLUOROSULFONATED IONOMER FILMS [J].
GEBEL, G ;
ALDEBERT, P ;
PINERI, M .
MACROMOLECULES, 1987, 20 (06) :1425-1428
[8]  
Grossmith F., 1988, P EL SOC S HON OCT, P363
[9]   Nanostructure of Nafion® membranes at different states of hydration -: An IR and Raman study [J].
Gruger, A ;
Régis, A ;
Schmatko, T ;
Colomban, P .
VIBRATIONAL SPECTROSCOPY, 2001, 26 (02) :215-225
[10]   Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes [J].
He, Qinggang ;
Kusoglu, Ahmet ;
Lucas, Ivan T. ;
Clark, Kyle ;
Weber, Adam Z. ;
Kostecki, Robert .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (40) :11650-11657