Hydrogen bonding in chitosan/Antarctic krill protein composite system: Study on construction and enhancement mechanism

被引:30
作者
Chen, Jie [1 ]
Guo, Jing [1 ,2 ]
Zhao, Miao [1 ,2 ]
Zhang, Rui [1 ]
Guan, Fucheng [1 ,2 ]
机构
[1] Dalian Polytech Univ, Sch Text & Mat Engn, Dalian 116034, Peoples R China
[2] Liaoning Engn Technol Res Ctr Funct Fiber & Compo, Dalian 116034, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Chitosan; Antarctic krill protein; Hydrogen bond; FTIR curve fitting; ANTARCTIC KRILL; CHITOSAN; ANTIBACTERIAL; CELLULOSE; PROPERTY; NETWORK; CHITIN;
D O I
10.1016/j.ijbiomac.2019.09.123
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The main of the work concerns the reason for the interpretation of the tensile strength of chitosan (CS) enhanced by Antarctic krill protein (AKP). We found a new mixed solvent, 2 wt% glacial acetic acid, and 2 wt% ethylene glycol aqueous solution, to prepare a stable CS/AKP composite solution. Then we obtained CS/AKP fiber by wet-spinning on a lab-scale wet-spinning machine. The tensile strength of blended fibers is 2.53 cN/dtex in the dry state, which is improved by 11.9% compared with the CS fibers. We found that the increased tensile strength of the blended fibers is relative to the hydrogen bond formed between CS and AKP. Specifically, illustrate the restructured hydrogen bonds in CS/AKP system in Fourier transform infrared curve fitting. The hydrogen bond probably benefits on crystalline growth of CS along the fiber axis and is the main drivable factor in removing the water molecules in blended fibers. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:513 / 520
页数:8
相关论文
共 39 条
[1]   Effect of polymer molecular weight on chitosan-protein interaction [J].
Bekale, L. ;
Agudelo, D. ;
Tajmir-Riahi, H. A. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 125 :309-317
[2]  
Bellamy L., 2013, The Infrared Spectra of Complex Molecules
[3]   Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films [J].
Branca, C. ;
D'Angelo, G. ;
Crupi, C. ;
Khouzami, K. ;
Rifici, S. ;
Ruello, G. ;
Wanderlingh, U. .
POLYMER, 2016, 99 :614-622
[4]   Antibacterial activity of quaternized chitosan modified nanofiber membrane [J].
Cheah, Wai Yan ;
Show, Pau-Loke ;
Ng, I-Son ;
Lin, Guan-Yu ;
Chiu, Chen-Yaw ;
Chang, Yu-Kaung .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 126 :569-577
[5]   Effect of N-acylation on structure and properties of chitosan fibers [J].
Choi, Choong Youl ;
Kim, Su Bong ;
Pak, Pyong Ki ;
Yoo, Dong Il ;
Chung, Yong Sik .
CARBOHYDRATE POLYMERS, 2007, 68 (01) :122-127
[6]   Preparation and characteristics of antibacterial chitosan films modified with N-halamine for biomedical application [J].
Chylinska, Marta ;
Kaczmarek, Halina ;
Burkowska-But, Aleksandra .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 176 :379-386
[7]   WET SPINNING OF CHITOSAN AND THE ACETYLATION OF CHITOSAN FIBERS [J].
EAST, GC ;
QIN, YM .
JOURNAL OF APPLIED POLYMER SCIENCE, 1993, 50 (10) :1773-1779
[8]   Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy [J].
Guo, Yilu ;
Wu, Peiyi .
CARBOHYDRATE POLYMERS, 2008, 74 (03) :509-513
[9]   Solubility and property of chitin in NaOH/urea aqueous solution [J].
Hu, Xianwen ;
Du, Yumin ;
Tang, Yufeng ;
Wang, Qun ;
Feng, Tao ;
Yang, Jianhong ;
Kennedy, John F. .
CARBOHYDRATE POLYMERS, 2007, 70 (04) :451-458
[10]   On the Temperature Dependence of Complex Formation between Chitosan and Proteins [J].
Kasimova, Marina R. ;
Velazquez-Campoy, Adrian ;
Nielsen, Hanne M. .
BIOMACROMOLECULES, 2011, 12 (07) :2534-2543