Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting

被引:78
作者
Wang, Jiajun [1 ]
Meng, Jie [2 ,3 ]
Li, Qunxiang [2 ,3 ]
Yang, Jinlong [2 ,3 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Struct & Performance Funct Mol, Key Lab Inorgan Organ Hybrid Funct Mat Chem, Minist Educ,Coll Chem, Tianjin 300387, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRONIC-STRUCTURE; CDSE NANOSHEETS; MONOLAYER; EVOLUTION; OXIDE;
D O I
10.1039/c6cp01001f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, various single-layer materials have been explored as desirable photocatalyts for water splitting. In this work, based on extensive density functional theory calculations, we examine the geometric, electronic, optical, and potential photocatalytic properties of single-layer cadmium chalcogenides (CdX sheets, X = S, Se, and Te), which are cleaved from the (001) plane of the bulk wurtzite structure. The predicted formation energies have relatively low values and a suitable substrate (i.e. graphene) that can effectively stabilize CdX sheets, which imply that the fabrication and application of CdX sheets are highly possible in experiments. The calculated band gaps, band edge positions and optical absorptions clearly reveal that CdSe and CdTe sheets are promising photocatalysts for water splitting driven by visible light. Moreover, the band gaps and band edge positions of three CdX sheets can be effectively tuned by applying biaxial strain, which then can enhance their photocatalytic performance. These theoretical findings imply that CdX sheets are promising candidates for photocatalytic water splitting.
引用
收藏
页码:17029 / 17036
页数:8
相关论文
共 57 条
[1]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[2]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[3]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[4]   Experimental Evidence for Epitaxial Silicene on Diboride Thin Films [J].
Fleurence, Antoine ;
Friedlein, Rainer ;
Ozaki, Taisuke ;
Kawai, Hiroyuki ;
Wang, Ying ;
Yamada-Takamura, Yukiko .
PHYSICAL REVIEW LETTERS, 2012, 108 (24)
[5]   CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light [J].
Frame, F. Andrew ;
Osterloh, Frank E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (23) :10628-10633
[6]   Linear optical properties in the projector-augmented wave methodology -: art. no. 045112 [J].
Gajdos, M ;
Hummer, K ;
Kresse, G ;
Furthmüller, J ;
Bechstedt, F .
PHYSICAL REVIEW B, 2006, 73 (04)
[7]   Hexagonal Planar CdS Monolayer Sheet for Visible Light Photocatalysis [J].
Garg, Priyanka ;
Kumar, Sourabh ;
Choudhuri, Indrani ;
Mahata, Arup ;
Pathak, Biswarup .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (13) :7052-7060
[8]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[9]   Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study [J].
Guo, Hongyan ;
Zhao, Yu ;
Lu, Ning ;
Kan, Erjun ;
Zeng, Xiao Cheng ;
Wu, Xiaojun ;
Yang, Jinlong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (20) :11336-11342
[10]   Hybrid functionals based on a screened Coulomb potential [J].
Heyd, J ;
Scuseria, GE ;
Ernzerhof, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18) :8207-8215