Improved biclustering of microarray data demonstrated through systematic performance tests

被引:111
|
作者
Turner, H [1 ]
Bailey, T [1 ]
Krzanowski, W [1 ]
机构
[1] Univ Exeter, Dept Math Sci, Exeter EX4 4QE, Devon, England
基金
英国惠康基金;
关键词
biclustering; two-way clustering; overlapping clustering; artificial microarray data; performance evaluation; bicluster quality measures;
D O I
10.1016/j.csda.2004.02.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new algorithm is presented for fitting the plaid model, a biclustering method developed for clustering gene expression data. The approach is based on speedy individual differences clustering and uses binary least squares to update the cluster membership parameters, making use of the binary constraints on these parameters and simplifying the other parameter updates. The performance of both algorithms is tested on simulated data sets designed to imitate (normalised) gene expression data, covering a range of biclustering configurations. Empirical distributions for the components of these data sets, including non-systematic error, are derived from a real set of microarray data. A set of two-way quality measures is proposed, based on one-way measures commonly used in information retrieval, to evaluate the quality of a retrieved bicluster with respect to a target bicluster in terms of both genes and samples. By defining a one-to-one correspondence between target biclusters and retrieved biclusters, the performance of each algorithm can be assessed. The results show that, using appropriately selected starting criteria, the proposed algorithm out-performs the original plaid model algorithm across a range of data sets. Furthermore, through the rigorous assessment of the plaid model a benchmark for future evaluation of biclustering methods is established. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 254
页数:20
相关论文
共 50 条
  • [1] Global biclustering of microarray data
    Wolf, Thomas
    Brors, Benedikt
    Hofmann, Thomas
    Georgii, Elisabeth
    ICDM 2006: Sixth IEEE International Conference on Data Mining, Workshops, 2006, : 125 - 129
  • [2] Bagged Biclustering for Microarray Data
    Hanczar, Blaise
    Nadif, Mohamed
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 1131 - 1132
  • [3] Evolutionary biclustering of microarray data
    Aguilar-Ruiz, JS
    Divina, F
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2005, 3449 : 1 - 10
  • [4] Improved biclustering on expression data through overlapping control
    Pontes, Beatriz
    Divina, Federico
    Giraldez, Raul
    Aguilar-Ruiz, Jesus S.
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2009, 2 (03) : 477 - 493
  • [5] Random walk biclustering for microarray data
    Angiulli, Fabrizio
    Cesario, Eugenio
    Pizzuti, Clara
    INFORMATION SCIENCES, 2008, 178 (06) : 1479 - 1497
  • [6] Combined Unsupervised Biclustering of Microarray Data
    Malutan, Raul
    Gomez Vilda, Pedro
    Borda, Monica
    2012 35TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2012, : 525 - 528
  • [7] Possibilistic approach for biclustering microarray data
    Cano, C.
    Adarve, L.
    Lopez, J.
    Blanco, A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (10) : 1426 - 1436
  • [8] Biclustering microarray data by Gibbs sampling
    Sheng, Qizheng
    Moreau, Yves
    De Moor, Bart
    BIOINFORMATICS, 2003, 19 : II196 - II205
  • [9] Biclustering models for structured microarray data
    Turner, HL
    Bailey, TC
    Krzanowski, WJ
    Hemingway, CA
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2005, 2 (04) : 316 - 329
  • [10] Bagging for Biclustering: Application to Microarray Data
    Hanczar, Blaise
    Nadif, Mohamed
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6321 : 490 - 505