Theory and computation of spheroidal wavefunctions

被引:75
作者
Falloon, PE [1 ]
Abbott, PC [1 ]
Wang, JB [1 ]
机构
[1] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 20期
关键词
D O I
10.1088/0305-4470/36/20/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we report on a package, written in the Mathematica computer algebra system, which has been developed to compute the spheroidal wavefunctions of Meixner and Schafke (1954 Mathieusche Funktionen und Sphdroidfunktionen) and is available online (physics. uwa.edu.au/(similar to)falloon/spheroidal/spheroidal.html). This package represents a substantial contribution to the existing software, since it computes the spheroidal wavefunctions to arbitrary precision for general complex parameters mu, nu, gamma and argument z; existing software can only handle integer It, v and does not give arbitrary precision. The package also incorporates various special cases and computes analytic power series and asymptotic expansions in the parameter gamma. The spheroidal wavefunctions of Flammer (1957 Spheroidal Wave functions) are included as a special case of Meixner's more general functions. This paper presents a concise review of the general theory of spheroidal wavefunctions and a description of the formulae and algorithms used in their computation, and gives high precision numerical examples.
引用
收藏
页码:5477 / 5495
页数:19
相关论文
共 21 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1941, Elliptic cylinder and spheroidal wave functions: including tables of separation constants and coefficients
[3]  
Arscott FM., 1964, Periodic Differential Equations: An Introduction to Mathieu, Lame and Allied Functions
[4]  
BLANCH G, 1946, J MATH PHYS CAMB, V25, P1
[5]   ON SPHEROIDAL WAVE FUNCTIONS OF ORDER ZERO [J].
BOUWKAMP, CJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1947, 26 (02) :79-92
[6]  
FALLOON PE, 2001, THESIS U W AUSTR
[7]  
Flammer C., 1957, SPHEROIDAL WAVE FUNC
[8]   COMPUTATION ASPECTS OF 3-TERM RECURRENCE RELATIONS [J].
GAUTSCHI, W .
SIAM REVIEW, 1967, 9 (01) :24-&
[9]   EIGENVALUES AND EIGENFUNCTIONS OF SPHEROIDAL WAVE EQUATION [J].
HODGE, DB .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (08) :2308-&
[10]  
KOMAROV IV, 1976, SPHEROIDAL COULOMB S