Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes

被引:814
作者
Feaster, Jeremy T. [1 ,2 ]
Shi, Chuan [1 ,2 ]
Cave, Etosha R. [1 ]
Hatsukade, Tom T. [1 ,2 ]
Abram, David N. [1 ]
Kuhl, Kendra P. [1 ]
Hahn, Christopher [1 ,2 ]
Norskov, Jens K. [1 ,2 ]
Jaramillo, Thomas F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
CO2; reduction; electrocatalysis; tin; Sn; formate; carbon monoxide; CO2; ELECTROREDUCTION; TIN ELECTRODES; CATALYSTS; INSIGHTS; ENERGETICS; CONVERSION; STABILITY; PROSPECTS; METHANE; TRENDS;
D O I
10.1021/acscatal.7b00687
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Increases in energy demand and in chemical production, together with the rise in CO2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO-) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO- production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO2 to HCOO- on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO-. Our results show that Sn electrodes produce HCOO-, carbon monoxide (CO), and hydrogen (H-2) across a range of potentials and that HCOO- production becomes favored at potentials more negative than -0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at -0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO- production. Instead, *OCHO is suggested to be the key intermediate for the CO2RR to HCOO- transformation, and Sn's optimal *OCHO binding energy supports its high selectivity for HCOO-. These results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO2 reduction to HCOO- on metal surfaces.
引用
收藏
页码:4822 / 4827
页数:6
相关论文
共 43 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility [J].
Agarwal, Arun S. ;
Zhai, Yumei ;
Hill, Davion ;
Sridhar, Narasi .
CHEMSUSCHEM, 2011, 4 (09) :1301-1310
[2]   Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential [J].
Anawati ;
Frankel, G. S. ;
Agarwal, Arun ;
Sridhar, Narasi .
ELECTROCHIMICA ACTA, 2014, 133 :188-196
[3]   STATE OF METALLIC PHASE IN PT-SN/AL2O3 CATALYSTS PREPARED BY DIFFERENT DEPOSITION TECHNIQUES [J].
BARONETTI, GT ;
DEMIGUEL, SR ;
SCELZA, OA ;
CASTRO, AA .
APPLIED CATALYSIS, 1986, 24 (1-2) :109-116
[4]   Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy [J].
Baruch, Maor F. ;
Pander, James E., III ;
White, James L. ;
Bocarsly, Andrew B. .
ACS CATALYSIS, 2015, 5 (05) :3148-3156
[5]   Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes [J].
Bumroongsakulsawat, P. ;
Kelsall, G. H. .
ELECTROCHIMICA ACTA, 2014, 141 :216-225
[6]   Electric Field Effects in Electrochemical CO2 Reduction [J].
Chen, Leanne D. ;
Urushihara, Makoto ;
Chan, Karen ;
Norskov, Jens K. .
ACS CATALYSIS, 2016, 6 (10) :7133-7139
[7]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[8]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[9]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[10]   Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces [J].
Durand, William J. ;
Peterson, Andrew A. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
SURFACE SCIENCE, 2011, 605 (15-16) :1354-1359