On an extension of the Hardy-Hilbert theorem

被引:1
作者
Weijian, J [1 ]
Mingzhe, G [1 ]
Xuemei, G [1 ]
机构
[1] Jishou Univ, Normal Coll, Dept Math & Comp Sci, Jishou Hunai 416000, Peoples R China
关键词
Hardy-Hilbert's inequality; beta-function; psi-function; weight function; Riemann zeta-function;
D O I
10.1556/SScMath.42.2005.1.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weighted Hardy-Hilbert's inequality with the parameter lambda of form Sigma(infinity)(m=1)Sigma(infinity)(n=1) a(m)b(n)/(m+n)(lambda)< B*(lambda)(Sigma(infinity)(n=1)n(1-lambda)a(n)(p))(1/p)(Sigma(infinity)(n=1)n(1-lambda)b(n)(q))(1/q) is established by introducing two parameters s and lambda, where 1/p + 1/q = 1, p >= q > 1, 1 - q/p < lambda <= 2, B*(A) = B(lambda - (1 - 2-lambda/p), 1 - 2-lambda/p) is the beta function. B* (lambda) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
[21]   ON SOME HIGHER-DIMENSIONAL HILBERT'S AND HARDY-HILBERT'S INTEGRAL INEQUALITIES WITH PARAMETERS [J].
Krnic, Mario ;
Pecaric, Josip ;
Vukovic, Predrag .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04) :701-716
[22]   A reverse extended Hardy-Hilbert's inequality with parameters [J].
Luo, Ricai ;
Yang, Bicheng ;
Huang, Xingshou .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
[23]   ON AN EXTENDED HARDY-HILBERT'S INEQUALITY IN THE WHOLE PLANE [J].
Gu, Zhaohui ;
Yang, Bicheng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06) :2619-2630
[24]   On a dual Hardy-Hilbert's inequality and its generalization [J].
Bicheng Y. .
Analysis Mathematica, 2005, 31 (2) :151-161
[25]   AN EXTENDED HARDY-HILBERT'S INEQUALITY WITH PARAMETERS AND APPLICATIONS [J].
Gu, Zhaohui ;
Yang, Bicheng .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04) :1375-1389
[26]   On a Refinement of Hardy-Hilbert's Inequality and Its Applications [J].
杨必成 .
Communications in Mathematical Research, 2000, (03) :279-286
[27]   An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application [J].
HE Le-ping~1 CHEN Xiao-yu~2 SHANG Xiao-zhou~2 (1.Department of Mathematics and Computer Science ;
2.Department of Mathematics and Computer Science .
数学季刊, 2007, (01) :68-74
[28]   On a New Extended Hardy-Hilbert's Inequality with Parameters [J].
Yang, Bicheng ;
Wu, Shanhe ;
Liao, Jianquan .
MATHEMATICS, 2020, 8 (01)
[29]   A multidimensional generalization of Hardy-Hilbert's integral inequality [J].
Yong, Hong .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02) :269-279
[30]   An Extended Multiple Hardy-Hilbert's Integral Inequality [J].
Hong Yong ;
Ji You-qing .
Communications in Mathematical Research, 2013, (01) :14-22