On an extension of the Hardy-Hilbert theorem

被引:1
作者
Weijian, J [1 ]
Mingzhe, G [1 ]
Xuemei, G [1 ]
机构
[1] Jishou Univ, Normal Coll, Dept Math & Comp Sci, Jishou Hunai 416000, Peoples R China
关键词
Hardy-Hilbert's inequality; beta-function; psi-function; weight function; Riemann zeta-function;
D O I
10.1556/SScMath.42.2005.1.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weighted Hardy-Hilbert's inequality with the parameter lambda of form Sigma(infinity)(m=1)Sigma(infinity)(n=1) a(m)b(n)/(m+n)(lambda)< B*(lambda)(Sigma(infinity)(n=1)n(1-lambda)a(n)(p))(1/p)(Sigma(infinity)(n=1)n(1-lambda)b(n)(q))(1/q) is established by introducing two parameters s and lambda, where 1/p + 1/q = 1, p >= q > 1, 1 - q/p < lambda <= 2, B*(A) = B(lambda - (1 - 2-lambda/p), 1 - 2-lambda/p) is the beta function. B* (lambda) is proved to be best possible. A stronger form of this inequality is obtained by means of the Euler-Maclaurin summation formula.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [1] On an Extension of Hardy-Hilbert's Inequality
    Yang, Bicheng
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 425 - 431
  • [2] A NEW EXTENSION ON THE HARDY-HILBERT INEQUALITY
    Zhou, Yu
    Gao, Mingzhe
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (03): : 547 - 556
  • [3] On the generalized Hardy-Hilbert inequality and its applications
    Gao, MZ
    Gao, XM
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (01): : 19 - 26
  • [4] On Hardy-Hilbert's integral inequality
    Yang, BC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (01) : 295 - 306
  • [5] On the extended Hardy-Hilbert's inequality
    Yang, BC
    Debnath, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 187 - 199
  • [6] Generalization of inequalities of Hardy-Hilbert type
    Brnetic, I
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 217 - 225
  • [7] Generalization of Hilbert and Hardy-Hilbert integral inequalities
    Yang, BC
    Brnetic, I
    Krnic, M
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (02): : 259 - 272
  • [8] On a new inequality similar to Hardy-Hilbert's inequality
    Yang, BC
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 37 - 44
  • [9] GENERALIZED NONCOMMUTATIVE HARDY AND HARDY-HILBERT TYPE INEQUALITIES
    Hansen, Frank
    Krulic, Kristina
    Pecarici, Josip
    Persson, Lars-Erik
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (10) : 1283 - 1295
  • [10] HARDY-HILBERT TYPE INEQUALITIES FOR MATRICES
    Zhang, Jiao
    Zheng, Zhan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (04): : 1069 - 1078