On optimal quantum codes

被引:205
作者
Grassl, M
Beth, T
Rötteler, M
机构
[1] Univ Karlsruhe, Inst Algorithmen & Kognit Syst, D-76128 Karlsruhe, Germany
[2] Univ Waterloo, Fac Math, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
quantum error-correcting codes; quantum MDS codes;
D O I
10.1142/S0219749904000079
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime power. It is shown that codes with parameters [n,n - 2d + 2,d](q) exist for all 3 <= n <= q and 1 <= d <= n/2 + 1. We also present quantum MDS codes with parameters [q(2), q(2) - 2d + 2,d](q) for 1 <= d <= q which additionally give rise to shortened codes [q(2) - s, q(2) - 2d + 2 - s,d](q) for some s.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 14 条