Hyper Open-Shell Excited Spin States of Transition-Metal Compounds: FeF2, FeF2•••Ethane, and FeF2•••Ethylene

被引:0
作者
Verma, Pragya [1 ,2 ,3 ]
Varga, Zoltan [1 ,2 ]
Truhlar, Donald G. [1 ,2 ,3 ]
机构
[1] Univ Minnesota, Chem Theory Ctr, Dept Chem, 207 Pleasant St Southeast, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Minnesota Supercomp Inst, 207 Pleasant St Southeast, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Nanoporous Mat Genome Ctr, 207 Pleasant St Southeast, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; CHARACTERIZING UNPAIRED ELECTRONS; 2ND-ORDER PERTURBATION-THEORY; MAIN-GROUP THERMOCHEMISTRY; SEMICONDUCTOR BAND-GAPS; COUPLED-CLUSTER THEORY; CONSISTENT BASIS-SETS; HIGH-VALENT IRON; NONCOVALENT INTERACTIONS; BROAD ACCURACY;
D O I
10.1021/acs.jpca.7b12652
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spin-state energetics are important for understanding properties that involve more than one spin state, for example, catalysis occurring on two or more potential energy surfaces corresponding to different electronic spins. Very often, multiple-spin processes involve transition-metal compounds, and therefore, it is important to understand the electronic structure and energetics of such compounds in different spin states. In this work, we benchmark relative spin-state energies of FeF2 with respect to the quintet ground spin state using both single-configurational and multiconfigurational methods, and we examine how they are affected by the binding of ethane and ethylene to the iron center. We also benchmark the binding energies of the complexes. The single-configurational methods used in this work are the Hartree-Fock method, 32 exchange correlation functionals, and the CCSD(T) coupled-cluster method in both restricted and unrestricted formalisms. The multiconfigurational methods that have been used are CASSCF, CASPT2, CASPT3, MRCI, MRCI+Q and MR-ACPF. The spin-state splitting energies depend on the functional chosen, and of the 32 exchange correlation functionals investigated here, we find that for the septet and spin-projected triplet states of FeF2 the M06 functional is the best when compared to our best estimates from multireference calculations. If all nine excitation energies are considered, where there are three excited spin states (singlet, triplet, and septet) for each of the three systems (FeF2, FeF2 center dot center dot center dot ethane, and FeF2 center dot center dot center dot ethylene), the three best-performing functionals are HLE16, SOGGA11-X, and M06-2X. We find that the binding of ethane perturbs the relative spin-state energy of FeF2 by only a small amount, but the stronger binding of ethylene has a larger effect. For the spin-state splitting energies of FeF2 using single-reference CCSD(T), we find that the predicted results depend very strongly on precisely how the calculations are done, in particular, on the spin-restricted or spin-unrestricted character of the SCF reference state, which can differ even by around 50 kcal/mol for the SCF reference state and the subsequent CCSD(T) calculations. Upon analyzing the wave functions of both the spin-restricted or spin-unrestricted formalisms, we find that the lowest-energy singlet and triplet states of the complexes, just like FeF2 in isolation, can have more unpaired electrons than they are usually assumed to have, i.e., they can be hyper open-shell electronic configurations, and this can significantly lower the energy.
引用
收藏
页码:2563 / 2579
页数:17
相关论文
共 130 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Toward reliable adiabatic connection models free from adjustable parameters [J].
Adamo, C ;
Barone, V .
CHEMICAL PHYSICS LETTERS, 1997, 274 (1-3) :242-250
[3]   2ND-ORDER PERTURBATION-THEORY WITH A COMPLETE ACTIVE SPACE SELF-CONSISTENT FIELD REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) :1218-1226
[4]  
[Anonymous], 2015, Gaussian 09, Revision D.01
[5]   Systematically convergent basis sets for transition metals.: I.: All-electron correlation consistent basis sets for the 3d elements Sc-Zn -: art. no. 064107 [J].
Balabanov, NB ;
Peterson, KA .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (06)
[6]   Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms:: Coupled cluster and multireference methods [J].
Balabanov, Nikolai B. ;
Peterson, Kirk A. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (07)
[7]   QUANTUM-MECHANICS AND CHEMICAL BONDING IN INORGANIC COMPLEXES .2. VALENCY AND INORGANIC METAL-COMPLEXES [J].
BALLHAUSEN, CJ .
JOURNAL OF CHEMICAL EDUCATION, 1979, 56 (05) :294-297
[8]   Stability analysis for solutions of the closed shell Kohn-Sham equation [J].
Bauernschmitt, R ;
Ahlrichs, R .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (22) :9047-9052
[9]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[10]   Selective Binding of O2 over N2 in a Redox-Active Metal-Organic Framework with Open Iron(II) Coordination Sites [J].
Bloch, Eric D. ;
Murray, Leslie J. ;
Queen, Wendy L. ;
Chavan, Sachin ;
Maximoff, Sergey N. ;
Bigi, Julian P. ;
Krishna, Rajamani ;
Peterson, Vanessa K. ;
Grandjean, Fernande ;
Long, Gary J. ;
Smit, Berend ;
Bordiga, Silvia ;
Brown, Craig M. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (37) :14814-14822