High performance photoresponsive field-effect transistors based on MoS2/pentacene heterojunction

被引:15
作者
Ren, Qiang [1 ]
Xu, Qingsheng [2 ]
Xia, Hongquan [1 ]
Luo, Xiao [1 ]
Zhao, Feiyu [1 ]
Sun, Lei [1 ]
Li, Yao [1 ]
Lv, Wenli [3 ]
Du, Lili [1 ]
Peng, Yingquan [1 ,3 ]
Zhao, Zhong [2 ]
机构
[1] Lanzhou Univ, Inst Microelect, Sch Phys Sci & Technol, South Tianshui Rd 222, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, South Tianshui Rd 222, Lanzhou 730000, Gansu, Peoples R China
[3] China Jiliang Univ, Coll Opt & Elect Technol, Xueyuan St 258, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoresponsive field-effect transistors; MoS2; Pentacene; CVD; VAPOR-DEPOSITION; MONOLAYER MOS2; LAYER MOS2; PENTACENE; SEMICONDUCTORS; PRESSURE; HYBRID;
D O I
10.1016/j.orgel.2017.07.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monolayer molybdenum disulfide (MoS2), with a high predicted intrinsic mobility of similar to 410 cm(2)/V at room temperature, shows great potential for application in sensors and optoelectronics as a result of good electrical performance and photoemission. Compared with the photoresponsive photodiodes, photoresponsive field-effect transistors exhibit higher sensitivity and lower noise. And, pentacene is a small molecule organic semiconductor and has high absorption in the visible region. Here, we reported on a high-performance photoresponsive field-effect transistor based on MoS2/pentacene inorganic/organic planar heterojunction. The results showed that the device demonstrated superior performance. Under 655 nm light illumination, the device exhibited an ultrahigh photoresponsivity of 103 A/W, a maximum photosensitivity of 1.8 x 10(3) and a high external quantum efficiency of around 195%, respectively. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 148
页数:7
相关论文
共 47 条
[1]   Nanosize semiconductors for photooxidation [J].
Abrams, BL ;
Wilcoxon, JP .
CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2005, 30 (03) :153-182
[2]   Pentacene-based radio-frequency identification circuitry [J].
Baude, PF ;
Ender, DA ;
Haase, MA ;
Kelley, TW ;
Muyres, DV ;
Theiss, SD .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3964-3966
[3]   High-Performance Two-Dimensional Polydiacetylene with a Hybrid Inorganic-Organic Structure [J].
Cho, Sangho ;
Han, Gibok ;
Kim, Kwan ;
Sung, Myung M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (12) :2742-2746
[4]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[5]  
Cui X, 2015, NAT NANOTECHNOL, V10, P534, DOI [10.1038/nnano.2015.70, 10.1038/NNANO.2015.70]
[6]   ELECTRON-HOLE SUBBANDS AT THE GASB-INAS INTERFACE [J].
DOHLER, GH .
SURFACE SCIENCE, 1980, 98 (1-3) :108-116
[7]   An Ultraviolet-to-NIR Broad Spectral Nanocomposite Photodetector with Gain [J].
Dong, Rui ;
Bi, Cheng ;
Dong, Qingfeng ;
Guo, Fawen ;
Yuan, Yongbo ;
Fang, Yanjun ;
Xiao, Zhengguo ;
Huang, Jinsong .
ADVANCED OPTICAL MATERIALS, 2014, 2 (06) :549-554
[8]   Semiconductors for organic transistors [J].
Facchetti, Antonio .
MATERIALS TODAY, 2007, 10 (03) :28-37
[9]   Thin-film organic polymer phototransistors [J].
Hamilton, MC ;
Martin, S ;
Kanicki, J .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (06) :877-885
[10]   Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors [J].
He, Daowei ;
Zhang, Yuhan ;
Wu, Qisheng ;
Xu, Rui ;
Nan, Haiyan ;
Liu, Junfang ;
Yao, Jianjun ;
Wang, Zilu ;
Yuan, Shijun ;
Li, Yun ;
Shi, Yi ;
Wang, Jinlan ;
Ni, Zhenhua ;
He, Lin ;
Miao, Feng ;
Song, Fengqi ;
Xu, Hangxun ;
Watanabe, K. ;
Taniguchi, T. ;
Xu, Jian-Bin ;
Wang, Xinran .
NATURE COMMUNICATIONS, 2014, 5