The singular values and vectors of low rank perturbations of large rectangular random matrices

被引:200
作者
Benaych-Georges, Florent [2 ,3 ]
Nadakuditi, Raj Rao [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Paris 06, LPMA, F-75252 Paris 05, France
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
Random matrices; Haar measure; Free probability; Phase transition; Random eigenvalues; Random eigenvectors; Random perturbation; Sample covariance matrices; SAMPLE COVARIANCE MATRICES; PRINCIPAL COMPONENT ANALYSIS; LARGE WIGNER MATRICES; VALUE DECOMPOSITION; LARGEST EIGENVALUE; FREE CONVOLUTION; APPROXIMATION; DEFORMATIONS; CONVERGENCE; LIMIT;
D O I
10.1016/j.jmva.2012.04.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-random limiting value is shown to depend explicitly on the limiting singular value distribution of the unperturbed matrix via an integral transform that linearizes rectangular additive convolution in free probability theory. The asymptotic position of the extreme singular values of the perturbed matrix differs from that of the original matrix if and only if the singular values of the perturbing matrix are above a certain critical threshold which depends on this same aforementioned integral transform. We examine the consequence of this singular value phase transition on the associated left and right singular eigenvectors and discuss the fluctuations of the singular values around these non-random limits. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 135
页数:16
相关论文
共 51 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]  
ANDERSON G, 2009, CAMBRIDGE STUDIES AD, V118
[3]  
Anderson T. W., 1984, An introduction to multivariate statistical analysis, V2nd
[4]  
[Anonymous], 1991, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[5]  
[Anonymous], P 11 ANN INT ACM SIG
[6]   RESTRICTED RANK MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM - THEORETICAL CONSIDERATIONS [J].
ARBENZ, P ;
GANDER, W ;
GOLUB, GH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 104 :75-95
[7]  
Bai Z., 2009, SPECTRAL ANAL LARGE
[8]  
Bai Z.D., 1995, J MULTIANAL, P175
[9]   Central limit theorems for eigenvalues in a spiked population model [J].
Bai, Zhidong ;
Yao, Jian-Feng .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03) :447-474
[10]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697