Recommendations for quantifying and reducing uncertainty in climate projections of species distributions

被引:51
作者
Brodie, Stephanie [1 ,2 ]
Smith, James A. [1 ,3 ]
Muhling, Barbara A. [1 ,3 ]
Barnett, Lewis A. K. [4 ]
Carroll, Gemma [5 ]
Fiedler, Paul [3 ]
Bograd, Steven J. [1 ,2 ]
Hazen, Elliott L. [1 ,2 ]
Jacox, Michael G. [1 ,2 ,6 ]
Andrews, Kelly S. [7 ]
Barnes, Cheryl L. [8 ]
Crozier, Lisa G. [7 ]
Fiechter, Jerome [9 ]
Fredston, Alexa [9 ,10 ]
Haltuch, Melissa A. [7 ]
Harvey, Chris J. [7 ]
Holmes, Elizabeth [7 ]
Karp, Melissa A. [11 ]
Liu, Owen R. [7 ]
Malick, Michael J. [7 ]
Buil, Mercedes Pozo [1 ,2 ]
Richerson, Kate [7 ]
Rooper, Christopher N. [12 ]
Samhouri, Jameal [7 ]
Seary, Rachel [1 ,2 ]
Selden, Rebecca L. [13 ]
Thompson, Andrew R. [3 ]
Tommasi, Desiree [1 ,3 ]
Ward, Eric J. [7 ]
Kaplan, Isaac C. [7 ]
机构
[1] Univ Calif Santa Cruz, Inst Marine Sci, Monterey, CA 95064 USA
[2] NOAA, Environm Res Div, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Monterey, CA USA
[3] NOAA, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, San Diego, CA USA
[4] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA
[5] Environm Def Fund, Seattle, WA USA
[6] NOAA, Phys Sci Lab, Earth Syst Res Labs, Boulder, CO USA
[7] NOAA, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA
[8] Univ Washington, Cooperat Inst Climate Ocean & Ecosyst Studies, Seattle, WA 98195 USA
[9] Univ Calif Santa Cruz, Ocean Sci Dept, Santa Cruz, CA 95064 USA
[10] Rutgers State Univ, Dept Ecol Evolut & Nat Resources, New Brunswick, NJ USA
[11] NOAA, ECS Tech, Fisheries Off Sci & Technol, Silver Spring, MD USA
[12] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC, Canada
[13] Wellesley Coll, Dept Biol Sci, Wellesley, MA 02181 USA
基金
美国国家航空航天局;
关键词
artificial intelligence; climate change; earth system models; extrapolation; fisheries; machine learning; species distribution models; virtual species; DISTRIBUTION MODELS; MARINE; RESPONSES; PREDATOR;
D O I
10.1111/gcb.16371
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change.
引用
收藏
页码:6586 / 6601
页数:16
相关论文
共 68 条
[1]   Climate-informed models benefit hindcasting but present challenges when forecasting species-habitat associations [J].
Barnes, Cheryl L. ;
Essington, Timothy E. ;
Pirtle, Jodi L. ;
Rooper, Christopher N. ;
Laman, Edward A. ;
Holsman, Kirstin K. ;
Aydin, Kerim Y. ;
Thorson, James T. .
ECOGRAPHY, 2022, 2022 (10)
[2]   Improving estimates of species distribution change by incorporating local trends [J].
Barnett, Lewis A. K. ;
Ward, Eric J. ;
Anderson, Sean C. .
ECOGRAPHY, 2021, 44 (03) :427-439
[3]   Why is the choice of future climate scenarios for species distribution modelling important? [J].
Beaumont, Linda J. ;
Hughes, Lesley ;
Pitman, A. J. .
ECOLOGY LETTERS, 2008, 11 (11) :1135-1146
[4]   dsmextra: Extrapolation assessment tools for density surface models [J].
Bouchet, Phil J. ;
Miller, David L. ;
Roberts, Jason J. ;
Mannocci, Laura ;
Harris, Catriona M. ;
Thomas, Len .
METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (11) :1464-1469
[5]   Forecasting species range dynamics with process-explicit models: matching methods to applications [J].
Briscoe, Natalie J. ;
Elith, Jane ;
Salguero-Gomez, Roberto ;
Lahoz-Monfort, Jose J. ;
Camac, James S. ;
Giljohann, Katherine M. ;
Holden, Matthew H. ;
Hradsky, Bronwyn A. ;
Kearney, Michael R. ;
McMahon, Sean M. ;
Phillips, Ben L. ;
Regan, Tracey J. ;
Rhodes, Jonathan R. ;
Vesk, Peter A. ;
Wintle, Brendan A. ;
Yen, Jian D. L. ;
Guillera-Arroita, Gurutzeta .
ECOLOGY LETTERS, 2019, 22 (11) :1940-1956
[6]   Citizen science records describe the distribution and migratory behaviour of a piscivorous predator, Pomatomus saltatrix [J].
Brodie, S. ;
Litherland, L. ;
Stewart, J. ;
Schilling, H. T. ;
Pepperell, J. G. ;
Suthers, I. M. .
ICES JOURNAL OF MARINE SCIENCE, 2018, 75 (05) :1573-1582
[7]   Integrating Dynamic Subsurface Habitat Metrics Into Species Distribution Models [J].
Brodie, Stephanie ;
Jacox, Michael G. ;
Bograd, Steven J. ;
Welch, Heather ;
Dewar, Heidi ;
Scales, Kylie L. ;
Maxwel, Sara M. ;
Briscoe, Dana M. ;
Edwards, Christopher A. ;
Crowder, Larry B. ;
Lewison, Rebecca L. ;
Hazen, Elliott L. .
FRONTIERS IN MARINE SCIENCE, 2018, 5
[8]   Trade-offs in covariate selection for species distribution models: a methodological comparison [J].
Brodie, Stephanie J. ;
Thorson, James T. ;
Carroll, Gemma ;
Hazen, Elliott L. ;
Bograd, Steven ;
Haltuch, Melissa A. ;
Holsman, Kirstin K. ;
Kotwicki, Stan ;
Samhouri, Jameal F. ;
Willis-Norton, Ellen ;
Selden, Rebecca L. .
ECOGRAPHY, 2020, 43 (01) :11-24
[9]   Taking climate change into account: Non-stationarity in climate drivers of ecological response [J].
Bueno de Mesquita, Clifton P. ;
White, Caitlin T. ;
Farrer, Emily C. ;
Hallett, Lauren M. ;
Suding, Katharine N. .
JOURNAL OF ECOLOGY, 2021, 109 (03) :1491-1500
[10]   A Dynamically Downscaled Ensemble of Future Projections for the California Current System [J].
Buil, Mercedes Pozo ;
Jacox, Michael G. ;
Fiechter, Jerome ;
Alexander, Michael A. ;
Bograd, Steven J. ;
Curchitser, Enrique N. ;
Edwards, Christopher A. ;
Rykaczewski, Ryan R. ;
Stock, Charles A. .
FRONTIERS IN MARINE SCIENCE, 2021, 8