Four-manifolds with positive isotropic curvature

被引:27
作者
Chen, Bing-Long [1 ]
Huang, Xian-Tao [2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Four-manifolds; positive isotropic curvature (PIC); Ricci flow; SCALAR CURVATURE; MANIFOLDS; METRICS; SPACE; CLASSIFICATION; TOPOLOGY; THEOREM;
D O I
10.1007/s11464-016-0557-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a survey on 4-dimensional manifolds with positive isotropic curvature. We will introduce the work of B. L. Chen, S. H. Tang and X. P. Zhu on a complete classification theorem on compact four-manifolds with positive isotropic curvature (PIC). Then we review an application of the classification theorem, which is from Chen and Zhu's work. Finally, we discuss our recent result on the path-connectedness of the moduli spaces of Riemannian metrics with positive isotropic curvature.
引用
收藏
页码:1123 / 1149
页数:27
相关论文
共 36 条
[1]  
[Anonymous], 1983, PUBL MATH I HAUTES E
[2]  
Brendle S., 2009, SURVEYS DIFFERENTIAL, VXIII, P4984
[3]  
Brendle S, 2009, J AM MATH SOC, V22, P287
[4]   CONSTRUCTION OF MANIFOLDS OF POSITIVE SCALAR CURVATURE [J].
CARR, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) :63-74
[5]  
Cerf Jean, 1968, Lecture notes in Math, V53
[6]  
Chang SYA, 2003, PUBL MATH-PARIS, P105
[7]  
Chen BL, 2006, J DIFFER GEOM, V74, P177
[8]   Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four-manifolds [J].
Chen, Bing-Long ;
Huang, Xian-Tao .
MATHEMATISCHE ANNALEN, 2016, 366 (1-2) :819-851
[9]   A conformally invariant classification theorem in four dimensions [J].
Chen, Bing-Long ;
Zhu, Xi-Ping .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (05) :811-831
[10]  
Chen BL, 2012, J DIFFER GEOM, V91, P41