Characterizations of k-copwin graphs

被引:32
作者
Clarke, Nancy E. [2 ]
MacGillivray, Gary [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[2] Acadia Univ, Dept Math & Stat, Wolfville, NS B0P 1X0, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Pursuit game; Cops and robber; WIN GRAPHS; ROBBER; COPS;
D O I
10.1016/j.disc.2012.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give two characterizations of the graphs on which k cops have a winning strategy in the game of Cops and Robber. One of these is in terms of an order relation, and one is in terms of a vertex ordering. Both generalize characterizations known for the case k = 1. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1421 / 1425
页数:5
相关论文
共 14 条
[1]   A GAME OF COPS AND ROBBERS [J].
AIGNER, M ;
FROMME, M .
DISCRETE APPLIED MATHEMATICS, 1984, 8 (01) :1-12
[2]   ON THE COP NUMBER OF A GRAPH [J].
BERARDUCCI, A ;
INTRIGILA, B .
ADVANCES IN APPLIED MATHEMATICS, 1993, 14 (04) :389-403
[3]   Cops and Robbers from a distance [J].
Bonato, Anthony ;
Chiniforooshan, Ehsan ;
Pralat, Pawel .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (43) :3834-3844
[4]   Bridged graphs are cop-win graphs: An algorithmic proof [J].
Chepoi, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 69 (01) :97-100
[5]   On distance-preserving and domination elimination orderings [J].
Chepoi, V .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (03) :414-436
[6]  
Clarke N., 1999, THESIS DALHOUSIE U
[7]  
Clarke N. E., 2005, Discussiones Mathematicae Graph Theory, V25, P241, DOI 10.7151/dmgt.1277
[8]  
Clarke N.E., 2002, THESIS DALHOUSIE U
[9]  
Clarke NE, 2000, ARS COMBINATORIA, V56, P97
[10]   Tandem-win graphs [J].
Clarke, NE ;
Nowakowski, RJ .
DISCRETE MATHEMATICS, 2005, 299 (1-3) :56-64