Curving of Large-Format Infrared Sensors

被引:0
|
作者
O'Masta, Mark [1 ]
Binh-Minh Nguyen [1 ]
Gurga, Alexander [1 ]
Sasse, Trevor [1 ]
Hempe, Brian [1 ]
Neuhaus, Christian [1 ]
Clough, Eric [1 ]
Hundley, Jacob [1 ]
Patterson, Pamela [1 ]
Jenkins, James [1 ]
Chen, Mary [1 ]
Jacques, Gregory [1 ]
Linton, Scott [1 ]
Perez, Francisco [1 ]
van Ysseldyk, Colin [1 ]
Wang, Esther [1 ]
Tang, Yan [1 ]
Niwa, Kenta [1 ]
Schaedler, Tobias [1 ]
Kyrtsos, Alexandros [2 ]
Glennon, John [3 ]
Glasmann, Andreu [2 ]
Bellotti, Enrico [2 ,3 ]
McKnight, Geoff [1 ]
机构
[1] HRL Labs LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[3] Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA
来源
关键词
Focal plane array; curved sensor; infrared photodetector; mid-wave infrared; wide field-of-view imaging;
D O I
10.1117/12.2618122
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High resolution, wide field-of-view, infrared (IR) imagers find use in defense and civilian applications. The most demanding of them desire uniform sensitivity across an image's field of view, while maintaining a small and light-weight optical design. These attributes can be achieved by curving of the focal plane array to reduce the need for field curvature correction. Using experimental and numerical methods, we investigated the spherical curving of hybridized arrays to demonstrate mechanical feasibility and opto-electronic performance. Each hybridized array comprised a 4k x 4k, 10 mu m pixel pitch, midwave IR (MWIR) detector hybridized to a 67 mm diagonal fanout chip. We curve an array to 139.2 mm radius of curvature, resulting in a pixel area coverage of 0.086 sr. Measurements across the curved array revealed minimal variation in bandgap (<0.1 mu m) and no appreciable difference in dark current.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Vendors streamline large-format scanners
    Emmett, A
    COMPUTER GRAPHICS WORLD, 1996, 19 (01) : 35 - 37
  • [22] Special considerations for large-format color
    Printing News, 2003, 151 (06):
  • [23] Composite substrate for large-format HgCdTeIRFPA
    Dhar, NK
    Chen, Y
    Brill, G
    Amirtharaj, PM
    Velicu, S
    Boieriu, P
    Birdwell, AG
    Wijewarnasuriya, PS
    INFRARED TECHNOLOLGY AND APPLICATIONS XXIX, 2003, 5074 : 157 - 165
  • [24] Pinhole patterns in large-format incunabula
    Boghardt, M
    LIBRARY, 2000, 1 (03): : 263 - 289
  • [25] Large-format equipment, consumables & software
    Inst Small Commerc Print, 4 (36):
  • [26] Development of storage format for composite large-format raster documents
    Vasin Y.G.
    Golubev I.A.
    Zherzdev S.V.
    Pattern Recognition and Image Analysis, 2009, 19 (04) : 710 - 716
  • [27] Large-format infrared arrays for future space and ground-based astronomy applications
    Love, PJ
    Ando, KJ
    Bornfreund, RE
    Corrales, E
    Mills, RE
    Cripe, JR
    Lum, NA
    Rosbeck, JP
    Smith, MS
    INFRARED SPACEBORNE REMOTE SENSING IX, 2001, 4486 : 373 - 384
  • [28] Noise Model of Large-Format Readout Integrated Circuit for Infrared Focal Plane Array
    Huang, Zhangcheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (01) : 142 - 153
  • [29] Large-format image sensors based on custom Geiger-mode avalanche photodiode arrays
    Aull, Brian F.
    Duerr, Erik K.
    Frechette, Jonathan P.
    McIntosh, K. Alexander
    Schuette, Daniel R.
    Suntharalingam, Vyshi
    Younger, Richard D.
    OPTICAL SENSING, IMAGING, AND PHOTON COUNTING: FROM X-RAYS TO THZ, 2018, 10729
  • [30] Large-format engineering applications in the print shop
    Inst Small Commerc Print, 4 (34):