Fluoride Ion Conductive Polymer Electrolytes for All-solid-state Fluoride Shuttle Batteries

被引:7
作者
Takahashi, Keitaro [1 ]
Yokoo, Atsuya [1 ]
Kaneko, Yukari [1 ]
Abe, Takeshi [2 ]
Seki, Shiro [1 ]
机构
[1] Kogakuin Univ, Grad Sch Appl Chem & Chem Engn, 2665-1 Nakano Machi, Hachioji, Tokyo 1920015, Japan
[2] Kyoto Univ, Grad Sch Engn, Nishikyo Ku, Kyoto 6158510, Japan
关键词
Fluoride Shuttle Battery; All-solid-state Battery; Solid Polymer Electrolyte; Transference Number; PERFORMANCE;
D O I
10.5796/electrochemistry.20-00062
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
To control the fluoride dissociation and conduction of polyether-based solid polymer electrolytes, an electrolyte system composed of a host polymer, metal salt, and anion acceptor was proposed. Appropriate choices of metal salt with low lattice enthalpy and anion acceptor concentration were important to obtain polymer electrolytes with high fluoride conductivity. The results of thermal and electrochemical measurements revealed that the optimal electrolyte system displayed a relatively high fluoride conductivity of ca. 1 x 10(-6) S cm(-1) at 303K and fluoride transference number of over 0.8 (80%). (C) The Author(s) 2020. Published by ECSJ.
引用
收藏
页码:310 / 313
页数:4
相关论文
共 15 条
[1]   Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes [J].
Gschwind, F. ;
Rodriguez-Garcia, G. ;
Sandbeck, D. J. S. ;
Gross, A. ;
Weil, M. ;
Fichtner, M. ;
Hoermann, N. .
JOURNAL OF FLUORINE CHEMISTRY, 2016, 182 :76-90
[2]   Investigation of the Ionic Conduction Mechanism of Polyether/Li7La3Zr2O12 Composite Solid Electrolytes by Electrochemical Impedance Spectroscopy [J].
Kato, Masaki ;
Hiraoka, Koji ;
Seki, Shiro .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
[3]   Triphenylboroxine and Triphenylborane as Anion Acceptors for Electrolyte in Fluoride Shuttle Batteries [J].
Konishi, Hiroaki ;
Minato, Taketoshi ;
Abe, Takeshi ;
Ogumi, Zempachi .
CHEMISTRY LETTERS, 2018, 47 (11) :1346-1349
[4]   Improvement of cycling performance in bismuth fluoride electrodes by controlling electrolyte composition in fluoride shuttle batteries [J].
Konishi, Hiroaki ;
Minato, Taketoshi ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (11) :1205-1211
[5]   Electrochemical properties of lead fluoride electrode in fluoride shuttle battery [J].
Konishi, Hiroaki ;
Minato, Taketoshi ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 826 :60-64
[6]  
Larcher D, 2015, NAT CHEM, V7, P19, DOI [10.1038/nchem.2085, 10.1038/NCHEM.2085]
[7]   Exploits, advances and challenges benefiting beyond Li-ion battery technologies [J].
El Kharbachi, A. ;
Zavorotynska, O. ;
Latroche, M. ;
Cuevas, F. ;
Yartys, V ;
Fichtner, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817
[8]   SIMPLIFIED IMPEDANCE/FREQUENCY-RESPONSE RESULTS FOR INTRINSICALLY CONDUCTING SOLIDS AND LIQUIDS [J].
MACDONALD, JR .
JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (10) :3977-3996
[9]   Li-ion battery materials: present and future [J].
Nitta, Naoki ;
Wu, Feixiang ;
Lee, Jung Tae ;
Yushin, Gleb .
MATERIALS TODAY, 2015, 18 (05) :252-264
[10]   Batteries based on fluoride shuttle [J].
Reddy, M. Anji ;
Fichtner, M. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (43) :17059-17062