Robust linear equation dwell time model compatible with large scale discrete surface error matrix

被引:25
作者
Dong, Zhichao [1 ]
Cheng, Haobo [1 ]
Tam, Hon-Yuen [2 ]
机构
[1] Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Kowloon Tong 999077, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM; OPTIMIZATION; FLAT;
D O I
10.1364/AO.54.002747
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The linear equation dwell time model can translate the 2D convolution process of material removal during subaperture polishing into a more intuitional expression, and may provide relatively fast and reliable results. However, the accurate solution of this ill-posed equation is not so easy, and its practicability for a large scale surface error matrix is still limited. This study first solves this ill-posed equation by Tikhonov regularization and the least square QR decomposition (LSQR) method, and automatically determines an optional interval and a typical value for the damped factor of regularization, which are dependent on the peak removal rate of tool influence functions. Then, a constrained LSQR method is presented to increase the robustness of the damped factor, which can provide more consistent dwell time maps than traditional LSQR. Finally, a matrix segmentation and stitching method is used to cope with large scale surface error matrices. Using these proposed methods, the linear equation model becomes more reliable and efficient in practical engineering. (C) 2015 Optical Society of America
引用
收藏
页码:2747 / 2756
页数:10
相关论文
共 18 条
[1]  
CARNAL CL, 1992, P SOC PHOTO-OPT INS, V1752, P54, DOI 10.1117/12.130719
[2]  
Deng Wei-jie, 2007, Optics and Precision Engineering, V15, P1009
[3]   Modified dwell time optimization model and its applications in subaperture polishing [J].
Dong, Zhichao ;
Cheng, Haobo ;
Tam, Hon-Yuen .
APPLIED OPTICS, 2014, 53 (15) :3213-3224
[4]   Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate [J].
Dong, Zhichao ;
Cheng, Haobo ;
Tam, Hon-Yuen .
APPLIED OPTICS, 2014, 53 (11) :2455-2464
[5]   Edge effect in fluid jet polishing [J].
Guo, Peiji ;
Fang, Hui ;
Yu, Jingchi .
APPLIED OPTICS, 2006, 45 (26) :6729-6735
[6]   OPTIMIZATION OF COMPUTER-CONTROLLED POLISHING [J].
JONES, RA .
APPLIED OPTICS, 1977, 16 (01) :218-224
[7]  
JONES RA, 1963, PHOTONIC SPECTRA, P34
[8]   Parametric modeling of edge effects for polishing tool influence functions [J].
Kim, Dae Wook ;
Park, Won Hyun ;
Kim, Sug-Whan ;
Burge, James H. .
OPTICS EXPRESS, 2009, 17 (07) :5656-5665
[9]   Progress update in magnetorheological finishing [J].
Kordonski, W ;
Golini, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (14-16) :2205-2212
[10]  
Kordonski W., 2004, P SOC PHOTO-OPT INS, V5180, P107, DOI DOI 10.1117/12.506280