Impact of Taguchi Optimization in Fiber Surface Plasmon Resonance Sensors Based on Si3N4 Layer

被引:6
作者
Mudgal, N. [1 ]
Choure, Kamal Kishor [1 ]
Falaswal, Manoj Kumar [1 ]
Pandey, Rahul [2 ]
Agarwal, Ankit [2 ]
Bhatia, Dinesh [3 ]
Saharia, Ankur [4 ]
Sahu, Saurabh [5 ]
Singh, G. [1 ]
机构
[1] Malaviya Natl Inst Technol, Dept ECE, Jaipur, Rajasthan, India
[2] Swami Keshvanand Inst Technol Management & Gramot, Jaipur, Rajasthan, India
[3] Rajasthan Tech Univ, Univ Dept, Kota, India
[4] Manipal Univ, Jaipur, Rajasthan, India
[5] Jabalpur Engn Coll, Jabalpur, India
关键词
Taguchi optimization; Surface plasmon resonance; Silver; Silicon nitride; Sensor; TUNGSTEN DISULFIDE WS2; SENSITIVITY ENHANCEMENT; REFRACTIVE-INDEX; OPTIC SENSOR; ZINC-OXIDE; SPR SENSOR; GRAPHENE; BIOSENSOR; SILVER; MOS2;
D O I
10.1007/s13538-022-01088-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article exhibits a fiber plasmonic sensor based on a silver (Ag) layer and a silicon nitride (Si3N4) layer with a wide dynamic range of refractive index sensing. The Taguchi (L9) orthogonal array method is applied to optimize the design parameters such as fiber core, sensing region length, and the thickness of Ag/Si3N4 layers. The performance of the structure is investigated for the full-width half maxima (FWHM) as the smaller the better (STB). The smaller FWHM favors accurate detection, high-quality factor, and better sensitive detection of biomolecules. With the use of analysis of variance (ANOVA), it is evident that for the normalized transmitted power, the Ag layer thickness contributes 47.36%, while the Si3N4 layer thickness contributes 0.06% only. Furthermore, the length of the sensing region has the highest dominating factor effect of 53.26% whereas the thickness of the Si3N4 layer has the least dominating factor effect of 6.90% on FWHM. This work has shown the highest sensitivity of 6287 nm/RIU whereas the quality factor and detection accuracy are 873.19 RIU-1 and 87.31 respectively. Hence, Taguchi's optimization approach is suitable in multilevel optimization of different control factors that lead to the robust design of the fiber SPR sensor.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold [J].
Franzen, Stefan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :6027-6032
[2]  
Gupta B.D., 2015, FIBER OPTIC SENSORS, P93
[3]   Effect of zinc oxide overlayer on the sensitivity of fiber optic SPR sensor with indium tin oxide layer [J].
Kapoor, Vicky ;
Sharma, Navneet K. s ;
Sajal, Vivek .
OPTIK, 2019, 185 :464-468
[4]   Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets [J].
Kaushik, Siddharth ;
Tiwari, Umesh K. ;
Pal, Sudipta S. ;
Sinha, Ravindra K. .
BIOSENSORS & BIOELECTRONICS, 2019, 126 :501-509
[5]   Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance [J].
Kolomenskii, AA ;
Gershon, PD ;
Schuessler, HA .
APPLIED OPTICS, 1997, 36 (25) :6539-6547
[6]   RADIATIVE DECAY OF NON RADIATIVE SURFACE PLASMONS EXCITED BY LIGHT [J].
KRETSCHM.E ;
RAETHER, H .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1968, A 23 (12) :2135-&
[7]   Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition [J].
Ku, Shih-Liang ;
Lee, Cheng-Chung .
OPTICAL MATERIALS, 2010, 32 (09) :956-960
[8]   Diffusion studies in magnetron sputter deposited silicon nitride films [J].
Kulczyk-Malecka, J. ;
Kelly, P. J. ;
West, G. ;
Clarke, G. C. B. ;
Ridealgh, J. A. .
SURFACE & COATINGS TECHNOLOGY, 2014, 255 :37-42
[9]   Zinc oxide, gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of pseudomonas like bacteria: A comparative study [J].
Kushwaha, Angad S. ;
Kumar, Anil ;
Kumar, Rajeev ;
Srivastava, Monika ;
Srivastava, S. K. .
OPTIK, 2018, 172 :697-707
[10]   SURFACE-PLASMON RESONANCE FOR GAS-DETECTION AND BIOSENSING [J].
LIEDBERG, B ;
NYLANDER, C ;
LUNDSTROM, I .
SENSORS AND ACTUATORS, 1983, 4 (02) :299-304