Approximating reals by sums of two rationals

被引:4
作者
Chan, Tsz Ho [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Diophantine approximation; character sum; exponential sum; Erdos-Turan inequality;
D O I
10.1016/j.jnt.2007.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Dirichlet's diophantine approximation theorem to approximating any real number alpha by a sum of two rational numbers a(1)/q(1) + a(2)/q(2) with denominators 1 <= q(1), q(2) <= N. This turns out to be related to the congruence equation problem xy =c (mod q) with 1 <= x, y <= q(1/2+is an element of). (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1182 / 1194
页数:13
相关论文
共 11 条
[1]   Diophantine approximation with mild divisibility constraints [J].
Alkan, E ;
Harman, G ;
Zaharescu, A .
JOURNAL OF NUMBER THEORY, 2006, 118 (01) :1-14
[2]  
Baker R. C., 1986, SEL MATH-NEW SER, VVol. 1
[3]  
Balog A., 1984, ANN SC NORM SUPER PI, V11, P353
[4]  
CHAN TH, 2005, INTEGERS, V5, pA23
[5]  
GARAEV MZ, ARXIVMATHNT0503164
[7]   The distribution of αp modulo one [J].
Heath-Brown, DR ;
Jia, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :79-104
[8]   DIOPHANTINE APPROXIMATION WITH SQUARE-FREE NUMBERS [J].
HEATHBROWN, DR .
MATHEMATISCHE ZEITSCHRIFT, 1984, 187 (03) :335-344
[9]  
SHPARLINSKI IE, 2006, B POL ACAD SCI MATH, V54, P193, DOI DOI 10.4064/BA54-3-1
[10]  
Vinogradov IM, 2004, METHOD TRIGONOMETRIC