Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles

被引:25
作者
Chang, Seongmin [1 ]
Yang, Seunghwa [2 ]
Shin, Hyunseong [1 ]
Cho, Maenghyo. [1 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151742, South Korea
[2] Dong A Univ, Dept Mech Engn, Busan 604714, South Korea
基金
新加坡国家研究基金会;
关键词
Multiscale; Homogenization; Nanocomposites; MOLECULAR-DYNAMICS SIMULATION; MORI-TANAKA THEORY; POLYMER NANOCOMPOSITES; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; THERMAL-EXPANSION; INCLUSION MODEL; FILLER SIZE; FIELD; INTERPHASE;
D O I
10.1016/j.compstruct.2015.03.041
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A multiscale statistical homogenization method based on a finite element analysis is proposed to predict the embedded filler size-dependent thermoelastic properties of nanoparticulate polymer composites. A molecular dynamics simulation is used to predict the particle size-dependent elastic constants and coefficient of thermal expansion (CUE) of nanocomposites. Because of the densified interphase zones formed in the vicinity of nanoparticles, and their relative dominance according to particle size, the thermoelastic properties are more prominently increased by smaller nanoparticles. The equivalent continuum microstructure of a nanocomposite is modeled as a three-phase periodic unit cell consisting of the nanoparticle, matrix, and effective interphase zone. An inverse numerical scheme is proposed to predict the thermoelastic properties of the effective interphase zone from the known properties of nanocomposites. In order to account for more realistic variation of the nanoparticle radius and spatial distribution in nanocomposites, statistical homogenization is performed by assigning randomness to the particle size using a beta distribution and to the spatial distribution through larger many-particle embedded representative volume elements (RVEs). Compared with the result from a regular homogenization method using a mono-particle RVE, the mean value of the elastic moduli increases, while that of the CTE decreases in the many-particle RVEs whose mean particle radius corresponds to that of the mono-particle RVE at the same volume fraction of nanoparticles. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:342 / 353
页数:12
相关论文
共 48 条
[1]   A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites [J].
Adnan, Ashfaq ;
Sun, C. T. ;
Mahfuz, Hassan .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (3-4) :348-356
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]  
Bakhvalov NS, 1984, HOMOGENIZATION AVERA
[4]   Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties [J].
Bandyopadhyay, Ananyo ;
Valavala, Pavan K. ;
Clancy, Thomas C. ;
Wise, Kristopher E. ;
Odegard, Gregory M. .
POLYMER, 2011, 52 (11) :2445-2452
[5]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[6]   A NEW APPROACH TO THE APPLICATION OF MORI-TANAKA THEORY IN COMPOSITE-MATERIALS [J].
BENVENISTE, Y .
MECHANICS OF MATERIALS, 1987, 6 (02) :147-157
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]   A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept [J].
Cho, Maenghyo ;
Yang, Seunghwa ;
Chang, Seongmin ;
Yu, Suyoung .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (12) :1564-1583
[9]   Method of scale bridging for thermoelasticity of cross-linked epoxy/SiC nanocomposites at a wide range of temperatures [J].
Choi, Joonmyung ;
Yang, Seunghwa ;
Yu, Suyoung ;
Shin, Hyunseong ;
Cho, Maenghyo .
POLYMER, 2012, 53 (22) :5178-5189
[10]   The glass transition and thermoelastic behavior of epoxy-based nanocomposites: A molecular dynamics study [J].
Choi, Joonmyung ;
Yu, Suyoung ;
Yang, Seunghwa ;
Cho, Maenghyo .
POLYMER, 2011, 52 (22) :5197-5203