Dual coding of siRNAs and miRNAs by plant transposable elements

被引:205
作者
Piriyapongsa, Jittima [1 ]
Jordan, I. King [1 ]
机构
[1] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
关键词
transposable elements; miRNA; siRNA; arabidopsis; rice;
D O I
10.1261/rna.916708
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We recently proposed a specific model whereby miRNAs encoded from short nonautonomous DNA-type TEs known as MITEs evolved from corresponding ancestral full-length (autonomous) elements that originally encoded short interfering (siRNAs). Our miRNA-origins model predicts that evolutionary intermediates may exist as TEs that encode both siRNAs and miRNAs, and we analyzed Arabidopsis thaliana and Oryza sativa (rice) genomic sequence and expression data to test this prediction. We found a number of examples of individual plant TE insertions that encode both siRNAs and miRNAs. We show evidence that these dual coding TEs can be expressed as readthrough transcripts from the intronic regions of spliced RNA messages. These TE transcripts can fold to form the hairpin (stem-loop) structures characteristic of miRNA genes along with longer double-stranded RNA regions that typically are processed as siRNAs. Taken together with a recent study showing Drosha independent processing of miRNAs from Drosophila introns, our results indicate that ancestral miRNAs could have evolved from TEs prior to the full elaboration of the miRNA biogenesis pathway. Later, as the specific miRNA biogenesis pathway evolved, and numerous other expressed inverted repeat regions came to be recognized by the miRNA processing endonucleases, the host gene-related regulatory functions of miRNAs emerged. In this way, host genomes were afforded an additional level of regulatory complexity as a by-product of TE defense mechanisms. The siRNA-to-miRNA evolutionary transition is representative of a number of other regulatory mechanisms that evolved to silence TEs and were later co-opted to serve as regulators of host gene expression.
引用
收藏
页码:814 / 821
页数:8
相关论文
共 55 条
[1]  
Abouelhoda M. I., 2004, Journal of Discrete Algorithms, V2, P53, DOI 10.1016/S1570-8667(03)00065-0
[2]   Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana [J].
Allen, E ;
Xie, ZX ;
Gustafson, AM ;
Sung, GH ;
Spatafora, JW ;
Carrington, JC .
NATURE GENETICS, 2004, 36 (12) :1282-1290
[3]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[4]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[5]   A family of microRNAs present in plants and animals [J].
Arteaga-Vazquez, Mario ;
Caballero-Perez, Juan ;
Vielle-Calzada, Jean-Philippe .
PLANT CELL, 2006, 18 (12) :3355-3369
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[8]   RNA polymerase III transcribes human microRNAs [J].
Borchert, Glen M. ;
Lanier, William ;
Davidson, Beverly L. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (12) :1097-1101
[9]   In vitro cloning of complex mixtures of DNA on microbeads:: Physical separation of differentially expressed cDNAs [J].
Brenner, S ;
Williams, SR ;
Vermaas, EH ;
Storck, T ;
Moon, K ;
McCollum, C ;
Mao, JI ;
Luo, SJ ;
Kirchner, JJ ;
Eletr, S ;
DuBridge, RB ;
Burcham, T ;
Albrecht, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1665-1670
[10]   Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J].
Brenner, S ;
Johnson, M ;
Bridgham, J ;
Golda, G ;
Lloyd, DH ;
Johnson, D ;
Luo, SJ ;
McCurdy, S ;
Foy, M ;
Ewan, M ;
Roth, R ;
George, D ;
Eletr, S ;
Albrecht, G ;
Vermaas, E ;
Williams, SR ;
Moon, K ;
Burcham, T ;
Pallas, M ;
DuBridge, RB ;
Kirchner, J ;
Fearon, K ;
Mao, J ;
Corcoran, K .
NATURE BIOTECHNOLOGY, 2000, 18 (06) :630-634