Fourier multipliers and group von Neumann algebras

被引:7
作者
Akylzhanov, Rauan [1 ]
Ruzhansky, Michael [1 ]
机构
[1] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.crma.2016.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the L-p-L-q boundedness of Fourier multipliers on locally compact separable unimodular groups for the range of indices 1 < p <= 2 <= q < infinity. Our approach is based on the operator algebras techniques. The result depends on a version of the Hausdorff-Young-Paley inequality that we establish on general locally compact separable unimodular groups. In particular, the obtained result implies the corresponding Hormander's Fourier multiplier theorem on R-n and the corresponding known results for Fourier multipliers on compact Lie groups. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS.
引用
收藏
页码:766 / 770
页数:5
相关论文
共 19 条
[1]  
Akylzhanov R., 2016, STUD MATH IN PRESS
[2]  
Akylzhanov R., 2015, ARXIV150407043
[3]  
Akylzhanov R., 2016, ARXIV151006321
[4]  
[Anonymous], 1981, VONNEUMANN ALGEBRAS
[5]  
[Anonymous], 2010, PseudoDifferential Operators and Symmetries: Background Analysis and Advanced Topics
[6]  
COIFMAN R, 1971, ANAL HARMONIQUE NONC
[7]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[8]  
Fischer V., 2014, ARXIV14116950
[9]  
Fischer V., 2016, PROG MATH, V314
[10]  
Hassannezhad A., 2016, ANN SC NO S IN PRESS