Fabrication and Performance of a Glue-Pressed Engineered Honeycomb Bamboo (GPEHB) Structure with Finger-jointed Ends as a Potential Substitute for Wood Lumber

被引:11
|
作者
Zhou, Jianbo [1 ,2 ]
Fu, Wansi [2 ]
Qing, Yan [3 ]
Han, Wang [2 ,4 ]
Zhao, Zhangrong [2 ]
Zhang, Bin [2 ]
机构
[1] Chinese Acad Forestry, Inst New Forest Technol, Beijing 100091, Peoples R China
[2] State Forestry Adm, Beijing Forestry Machinery Res Inst, Beijing 100029, Peoples R China
[3] Cent South Univ Forestry & Technol, Coll Mat Sci & Technol, Changsha 410004, Hunan, Peoples R China
[4] Wuzhou Univ, Wuzhou 543002, Guangxi, Peoples R China
来源
BIORESOURCES | 2015年 / 10卷 / 02期
关键词
Bionic fabrication; Original state reorganization; Mechanical properties; Heat-conducting performance; FUNDAMENTAL PROPERTIES; COMPOSITE PRODUCTS;
D O I
10.15376/biores.10.2.3302-3313
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
With the increasing scarcity of wood as a natural resource, bamboo has become a popular substitute for wood. The present work developed a high-strength original state multi-reorganization material (GPEHB), without the use of a hot press or traditional assembly. The original bamboo units were polygonized into outer contours and milled into finger-joints on each ending. The GPEHB was organized and assembled under an external press, using industrial adhesives. The mechanical properties and thermal insulation of GPEHB were characterized. Moreover, the overall GPEHB unit bending strength was 73.15 MPa, and the parallel-to-grain compression was 55.22 MPa (higher than that of Pinus sylvestris lumber, though less than that of glued laminated bamboo). The GPEHB unit overall density was 0.24 g/cm(3), 76% lower than that of glued laminated bamboo, and 50% lower than Pinus sylvestris lumber. The compressive strength of GPEHB (7 units) was 170.5 kN, while the compressive strength of GPEHB for 14 units was 493.5 kN, which meet the requirements of GB 50005 (2003). The bending strength of GPEHB 7 units was 12 kN, while that of 14 units was 37 kN. The heat conductivity coefficient for GPEHB was 0.25 W/mK, which is better than concrete and steel. The GPEHB has taken full advantage of its honeycomb-structured material, which allows it to avoid stress concentration in the regular polygonal corners.
引用
收藏
页码:3302 / 3313
页数:12
相关论文
共 1 条
  • [1] Mechanical Performance of Glue-Pressed Engineered Honeycomb Bamboo under Axial Compression
    Zhang, Bin
    Zhou, Jianbo
    Fu, Wansi
    Luo, Mei
    Yan, Wei
    Chang, Feihu
    Liu, Yanhe
    Jiang, Pengfei
    JOURNAL OF STRUCTURAL ENGINEERING, 2021, 147 (04)