An Analytical Model for Spatially Varying Clear-Sky CO2 Forcing

被引:30
作者
Jeevanjee, Nadir [1 ]
Seeley, Jacob T. [2 ]
Paynter, David [1 ]
Fueglistaler, Stephan [3 ]
机构
[1] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA
[2] Harvard Univ, Ctr Environm, Cambridge, MA 02138 USA
[3] Princeton Univ, Geosci Dept, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Climate change; Greenhouse gases; Radiative forcing; CARBON-DIOXIDE; GREENHOUSE; SENSITIVITY; ATMOSPHERE; RADIATION; FLUXES;
D O I
10.1175/JCLI-D-19-0756.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Clear-sky CO2 forcing is known to vary significantly over the globe, but the state dependence that controls this is not well understood. Here we extend the formalism of Wilson and Gea-Banacloche to obtain a quantitatively accurate analytical model for spatially varying instantaneous CO2 forcing, which depends only on surface temperature T-s, stratospheric temperature, and column relative humidity (RH). This model shows that CO2 forcing can be considered a swap of surface emission for stratospheric emission, and thus depends primarily on surface-stratosphere temperature contrast. The strong meridional gradient in CO2 forcing is thus largely due to the strong meridional gradient in T-s. In the tropics and midlatitudes, however, the presence of H2O modulates the forcing by replacing surface emission with RH-dependent atmospheric emission. This substantially reduces the forcing in the tropics, introduces forcing variations due to spatially varying RH, and sets an upper limit (with respect to T-s variations) on CO2 forcing that is reached in the present-day tropics. In addition, we extend our analytical model to the instantaneous tropopause forcing, and find that this forcing depends on T-s only, with no dependence on stratospheric temperature. We also analyze the tau = 1 approximation for the emission level and derive an exact formula for the emission level, which yields values closer to tau = 1/2 than to tau = 1.
引用
收藏
页码:9463 / 9480
页数:18
相关论文
共 70 条
[1]   Multimodel climate and variability of the stratosphere [J].
Butchart, N. ;
Charlton-Perez, A. J. ;
Cionni, I. ;
Hardiman, S. C. ;
Haynes, P. H. ;
Krueger, K. ;
Kushner, P. J. ;
Newman, P. A. ;
Osprey, S. M. ;
Perlwitz, J. ;
Sigmond, M. ;
Wang, L. ;
Akiyoshi, H. ;
Austin, J. ;
Bekki, S. ;
Baumgaertner, A. ;
Braesicke, P. ;
Bruehl, C. ;
Chipperfield, M. ;
Dameris, M. ;
Dhomse, S. ;
Eyring, V. ;
Garcia, R. ;
Garny, H. ;
Joeckel, P. ;
Lamarque, J-F ;
Marchand, M. ;
Michou, M. ;
Morgenstern, O. ;
Nakamura, T. ;
Pawson, S. ;
Plummer, D. ;
Pyle, J. ;
Rozanov, E. ;
Scinocca, J. ;
Shepherd, T. G. ;
Shibata, K. ;
Smale, D. ;
Teyssedre, H. ;
Tian, W. ;
Waugh, D. ;
Yamashita, Y. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[2]   Radiative forcing at high concentrations of well- mixed greenhouse gases [J].
Byrne, B. ;
Goldblatt, C. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (01) :152-160
[3]   An Assessment of Direct Radiative Forcing, Radiative Adjustments, and Radiative Feedbacks in Coupled Ocean-Atmosphere Models [J].
Chung, Eui-Seok ;
Soden, Brian J. .
JOURNAL OF CLIMATE, 2015, 28 (10) :4152-4170
[4]   LINE-BY-LINE CALCULATIONS OF ATMOSPHERIC FLUXES AND COOLING RATES - APPLICATION TO WATER-VAPOR [J].
CLOUGH, SA ;
IACONO, MJ ;
MONCET, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) :15761-15785
[5]  
Coakley J. A., 2014, Atmospheric Radiation: A Primer with Illustrative Solutions
[6]   APPROXIMATE METHODS FOR FINDING CO2 15-MU-M-BAND TRANSMISSION IN PLANETARY-ATMOSPHERES [J].
CRISP, D ;
FELS, SB ;
SCHWARZKOPF, MD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1986, 91 (D11) :1851-1866
[7]   THERMAL RADIATION IN THE UPPER ATMOSPHERE [J].
CURTIS, AR ;
GOODY, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 236 (1205) :193-206
[8]   The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3 [J].
Donner, Leo J. ;
Wyman, Bruce L. ;
Hemler, Richard S. ;
Horowitz, Larry W. ;
Ming, Yi ;
Zhao, Ming ;
Golaz, Jean-Christophe ;
Ginoux, Paul ;
Lin, S. -J. ;
Schwarzkopf, M. Daniel ;
Austin, John ;
Alaka, Ghassan ;
Cooke, William F. ;
Delworth, Thomas L. ;
Freidenreich, Stuart M. ;
Gordon, C. T. ;
Griffies, Stephen M. ;
Held, Isaac M. ;
Hurlin, William J. ;
Klein, Stephen A. ;
Knutson, Thomas R. ;
Langenhorst, Amy R. ;
Lee, Hyun-Chul ;
Lin, Yanluan ;
Magi, Brian I. ;
Malyshev, Sergey L. ;
Milly, P. C. D. ;
Naik, Vaishali ;
Nath, Mary J. ;
Pincus, Robert ;
Ploshay, Jeffrey J. ;
Ramaswamy, V. ;
Seman, Charles J. ;
Shevliakova, Elena ;
Sirutis, Joseph J. ;
Stern, William F. ;
Stouffer, Ronald J. ;
Wilson, R. John ;
Winton, Michael ;
Wittenberg, Andrew T. ;
Zeng, Fanrong .
JOURNAL OF CLIMATE, 2011, 24 (13) :3484-3519
[9]   The Reference Forward Model (RFM) [J].
Dudhia, Anu .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 186 :243-253
[10]   Greenhouse Effect: The Relative Contributions of Emission Height and Total Absorption [J].
Dufresne, Jean-Louis ;
Eymet, Vincent ;
Crevoisier, Cyril ;
Grandpeix, Jean-Yves .
JOURNAL OF CLIMATE, 2020, 33 (09) :3827-3844