Monotonicity and inequalities for the gamma function

被引:50
作者
Yang, Zhen-Hang [1 ,2 ]
Tian, Jing-Feng [1 ]
机构
[1] North China Elect Power Univ, Coll Sci & Technol, Ruixiang St 282, Baoding 071051, Peoples R China
[2] State Grid Zhejiang Elect Power Co, Res Inst, Dept Sci & Technol, Hangzhou 310014, Zhejiang, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2017年
关键词
gamma function; Laplace transform; complete monotonicity; inequality; ASYMPTOTIC FORMULAS; FACTORIAL FUNCTION; BURNSIDES FORMULA; SERIES; APPROXIMATION;
D O I
10.1186/s13660-017-1591-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the monotonicity rule for the ratio of two Laplace transforms, we prove that the function x bar right arrow 1/24x(In Gamma(x + 1/2) - x In x + x - In root 2 pi) + 1 - 120/7 x(2) is strictly increasing from (0,infinity) onto (1, 1860/343). This not only yields some known and new inequalities for the gamma function, but also gives some completely monotonic functions related to the gamma function.
引用
收藏
页数:15
相关论文
共 37 条
[1]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[2]  
[Anonymous], 1969, SPECIAL FUNCTIONS TH
[3]  
[Anonymous], LAPLACE TRANSFORM MA
[4]  
[Anonymous], ARXIV14096408MATHCA
[5]  
BATIR NECDET, 2008, Proyecciones (Antofagasta), V27, P97
[6]   Inequalities for the gamma function [J].
Batir, Necdet .
ARCHIV DER MATHEMATIK, 2008, 91 (06) :554-563
[7]   On non-monotonic ageing properties from the Laplace transform, with actuarial applications [J].
Belzunce, Felix ;
Ortega, Eva-Maria ;
Ruiz, Jose M. .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (01) :1-14
[8]  
Bernstein S, 1929, ACTA MATH-DJURSHOLM, V52, P1
[9]  
Burnside W., 1917, Messenger Math, V46, P157
[10]   A more accurate approximation for the gamma function [J].
Chen, Chao-Ping .
JOURNAL OF NUMBER THEORY, 2016, 164 :417-428