Understanding drivers of aquatic ecosystem metabolism in freshwater subtropical ridge and slough wetlands

被引:4
作者
Kominoski, John S. [1 ]
Pachon, Julio [1 ]
Brock, James T. [2 ]
Mcvoy, Christopher
Malone, Sparkle L. [1 ]
机构
[1] Florida Int Univ, Inst Environm, Dept Biol Sci, Miami, FL 33199 USA
[2] Desert Res Inst, Reno, NV 89512 USA
来源
ECOSPHERE | 2021年 / 12卷 / 12期
关键词
dissolved oxygen; floc; freshwater marsh; long-term ecological research; net aquatic ecosystem metabolism; subtropical; ORGANIC-MATTER; CARBON-DIOXIDE; EVERGLADES; FLORIDA; PHOSPHORUS; RESPIRATION; EXCHANGE; PRODUCTIVITY; DYNAMICS; PATTERNS;
D O I
10.1002/ecs2.3849
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
How climate and habitat drive variation in aquatic metabolism in wetlands remains uncertain. To quantify differences in seasonal aquatic metabolism among wetlands, we estimated aquatic ecosystem metabolism (gross primary productivity, GPP; ecosystem respiration, ER; net aquatic productivity, NAP) in subtropical ridge and slough wetlands of the Florida Everglades from more than 2 yr of continuously measured water column dissolved oxygen, photosynthetically active radiation (PAR), water temperature, and water depth. Gross primary productivity and ER were modeled from light, temperature, and water depth using non-linear minimization and maximum likelihood. Reaeration rates were estimated from wind speed. Dissolved oxygen was below saturation at all sites during both wet and dry seasons. Water depth interacted with vegetation to influence PAR, water temperature, and spatiotemporal patterns in aquatic metabolism. Gross primary productivity and ER were highest at the slough with lowest submerged aquatic vegetation (low-SAV slough), intermediate in the sawgrass (Cladium jamaicense) ridge site, and lowest at the slough with highest submerged aquatic vegetation (high-SAV slough). Ecosystem respiration was strongly positively correlated with GPP at the sawgrass ridge and low-SAV slough sites. Gross primary productivity increased with water temperature and PAR across all habitat types, whereas ER decreased (more respiration) with water temperature and PAR. Net aquatic productivity was negatively correlated with water temperature and positively correlated with PAR, suggesting that ER was more sensitive than GPP to water temperature. Aquatic metabolism was largely net heterotrophic in all wetlands, and high-SAV appeared to buffer seasonal variation in PAR and water temperatures that drive NAP in subtropical wetlands. Our results suggest that aquatic ecosystem metabolism in wetlands with seasonal hydrology is sensitive to changes in water depth and vegetation density that influence temperature and light. Expanding our understanding of how metabolic processes and carbon cycling in wetland ecosystems vary across gradients in hydrology, vegetation, and organic matter could enhance our understanding and protection of conditions that maximize carbon storage.
引用
收藏
页数:16
相关论文
共 51 条
[1]   Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere [J].
Aufdenkampe, Anthony K. ;
Mayorga, Emilio ;
Raymond, Peter A. ;
Melack, John M. ;
Doney, Scott C. ;
Alin, Simone R. ;
Aalto, Rolf E. ;
Yoo, Kyungsoo .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2011, 9 (01) :53-60
[2]   A Molecular and Stable Isotopic Approach to Investigate Algal and Detrital Energy Pathways in a Freshwater Marsh [J].
Belicka, Laura L. ;
Sokol, Eric R. ;
Hoch, J. Matthew ;
Jaffe, Rudolf ;
Trexler, Joel C. .
WETLANDS, 2012, 32 (03) :531-542
[3]   Comparing carbon sequestration in temperate freshwater wetland communities [J].
Bernal, Blanca ;
Mitsch, William J. .
GLOBAL CHANGE BIOLOGY, 2012, 18 (05) :1636-1647
[4]   The metabolic regimes of flowing waters [J].
Bernhardt, E. S. ;
Heffernan, J. B. ;
Grimm, N. B. ;
Stanley, E. H. ;
Harvey, J. W. ;
Arroita, M. ;
Appling, A. P. ;
Cohen, M. J. ;
McDowell, W. H. ;
Hall, R. O., Jr. ;
Read, J. S. ;
Roberts, B. J. ;
Stets, E. G. ;
Yackulic, C. B. .
LIMNOLOGY AND OCEANOGRAPHY, 2018, 63 :S99-S118
[5]   Control Points in Ecosystems: Moving Beyond the Hot Spot Hot Moment Concept [J].
Bernhardt, Emily S. ;
Blaszczak, Joanna R. ;
Ficken, Cari D. ;
Fork, Megan L. ;
Kaiser, Kendra E. ;
Seybold, Erin C. .
ECOSYSTEMS, 2017, 20 (04) :665-682
[6]   Changes in production and respiration during a spring phytoplankton bloom in San Francisco Bay, California, USA: implications for net ecosystem metabolism [J].
Caffrey, JM ;
Cloern, JE ;
Grenz, C .
MARINE ECOLOGY PROGRESS SERIES, 1998, 172 :1-12
[7]   Factors controlling net ecosystem metabolism in US estuaries [J].
Caffrey, JM .
ESTUARIES, 2004, 27 (01) :90-101
[8]   Methane Emissions in Spanish Saline Lakes: Current Rates, Temperature and Salinity Responses, and Evolution under Different Climate Change Scenarios [J].
Camacho, Antonio ;
Picazo, Antonio ;
Rochera, Carlos ;
Santamans, Anna C. ;
Morant, Daniel ;
Miralles-Lorenzo, Javier ;
Castillo-Escriva, Andreu .
WATER, 2017, 9 (09)
[9]   Reconciling carbon-cycle concepts, terminology, and methods [J].
Chapin, F. S., III ;
Woodwell, G. M. ;
Randerson, J. T. ;
Rastetter, E. B. ;
Lovett, G. M. ;
Baldocchi, D. D. ;
Clark, D. A. ;
Harmon, M. E. ;
Schimel, D. S. ;
Valentini, R. ;
Wirth, C. ;
Aber, J. D. ;
Cole, J. J. ;
Goulden, M. L. ;
Harden, J. W. ;
Heimann, M. ;
Howarth, R. W. ;
Matson, P. A. ;
McGuire, A. D. ;
Melillo, J. M. ;
Mooney, H. A. ;
Neff, J. C. ;
Houghton, R. A. ;
Pace, M. L. ;
Ryan, M. G. ;
Running, S. W. ;
Sala, O. E. ;
Schlesinger, W. H. ;
Schulze, E. -D. .
ECOSYSTEMS, 2006, 9 (07) :1041-1050
[10]   The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences [J].
Chapin, F. Stuart, III ;
McFarland, Jack ;
McGuire, A. David ;
Euskirchen, Eugenie S. ;
Ruess, Roger W. ;
Kielland, Knut .
JOURNAL OF ECOLOGY, 2009, 97 (05) :840-850