Natural product drug discovery in the artificial intelligence era

被引:123
作者
Saldivar-Gonzalez, F. I. [1 ]
Aldas-Bulos, V. D. [2 ]
Medina-Franco, J. L. [1 ]
Plisson, F. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Pharm, Sch Chem, DIFACQUIM Res Grp, Ave Univ 3000, Mexico City 04510, DF, Mexico
[2] Ctr Invest & Estudios Avanzados IPN, Lab Nacl Genom Biodiversidad Langebio, Unidad Genom Avanzada, Guanajuato, Mexico
[3] Ctro Invest & Estudios Avanzados IPN, Lab Nacl Genom Biodiversidad Lanebio, Unidad Genom Avanzada, CONACYT, Guanajuato, Mexico
关键词
DIVERSITY-ORIENTED SYNTHESIS; EXPLORING CHEMICAL SPACE; QSAR MODEL DEVELOPMENT; LEAD-LIKE MOLECULES; MACROMOLECULAR TARGETS; PROTEIN INTERACTIONS; SCAFFOLD DIVERSITY; COMPOUND LIBRARIES; NEURAL-NETWORKS; DESIGN;
D O I
10.1039/d1sc04471k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.
引用
收藏
页码:1526 / 1546
页数:21
相关论文
共 313 条
[1]   Novelty in the target landscape of the pharmaceutical industry [J].
Agarwal, Pankaj ;
Sanseau, Philippe ;
Cardon, Lon R. .
NATURE REVIEWS DRUG DISCOVERY, 2013, 12 (08) :573-574
[2]   A machine learning-based method for prediction of macrocyclization patterns of polyketides and non-ribosomal peptides [J].
Agrawal, Priyesh ;
Mohanty, Debasisa .
BIOINFORMATICS, 2021, 37 (05) :603-611
[3]   RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links [J].
Agrawal, Priyesh ;
Khater, Shradha ;
Gupta, Money ;
Sain, Neetu ;
Mohanty, Debasisa .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W80-W88
[4]  
Ahrens E. K. F., 1988, CHEM STRUCTURES, P97
[5]   A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood [J].
Aniceto, Natalia ;
Freitas, Alex A. ;
Bender, Andreas ;
Ghafourian, Taravat .
JOURNAL OF CHEMINFORMATICS, 2016, 8
[6]   Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature [J].
Arnison, Paul G. ;
Bibb, Mervyn J. ;
Bierbaum, Gabriele ;
Bowers, Albert A. ;
Bugni, Tim S. ;
Bulaj, Grzegorz ;
Camarero, Julio A. ;
Campopiano, Dominic J. ;
Challis, Gregory L. ;
Clardy, Jon ;
Cotter, Paul D. ;
Craik, David J. ;
Dawson, Michael ;
Dittmann, Elke ;
Donadio, Stefano ;
Dorrestein, Pieter C. ;
Entian, Karl-Dieter ;
Fischbach, Michael A. ;
Garavelli, John S. ;
Goeransson, Ulf ;
Gruber, Christian W. ;
Haft, Daniel H. ;
Hemscheidt, Thomas K. ;
Hertweck, Christian ;
Hill, Colin ;
Horswill, Alexander R. ;
Jaspars, Marcel ;
Kelly, Wendy L. ;
Klinman, Judith P. ;
Kuipers, Oscar P. ;
Link, A. James ;
Liu, Wen ;
Marahiel, Mohamed A. ;
Mitchell, Douglas A. ;
Moll, Gert N. ;
Moore, Bradley S. ;
Mueller, Rolf ;
Nair, Satish K. ;
Nes, Ingolf F. ;
Norris, Gillian E. ;
Olivera, Baldomero M. ;
Onaka, Hiroyasu ;
Patchett, Mark L. ;
Piel, Joern ;
Reaney, Martin J. T. ;
Rebuffat, Sylvie ;
Ross, R. Paul ;
Sahl, Hans-Georg ;
Schmidt, Eric W. ;
Selsted, Michael E. .
NATURAL PRODUCT REPORTS, 2013, 30 (01) :108-160
[7]   An overview of MetaMap: historical perspective and recent advances [J].
Aronson, Alan R. ;
Lang, Francois-Michel .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2010, 17 (03) :229-236
[8]   Best practices in machine learning for chemistry comment [J].
Artrith, Nongnuch ;
Butler, Keith T. ;
Coudert, Francois-Xavier ;
Han, Seungwu ;
Isayev, Olexandr ;
Jain, Anubhav ;
Walsh, Aron .
NATURE CHEMISTRY, 2021, 13 (06) :505-508
[9]   Exploring Chemical Space with Machine Learning [J].
Arus-Pous, Josep ;
Awale, Mahendra ;
Probst, Daniel ;
Reymond, Jean-Louis .
CHIMIA, 2019, 73 (12) :1018-1023
[10]   Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity [J].
Aswad, Miran ;
Rayan, Mahmoud ;
Abu-Lafi, Saleh ;
Falah, Mizied ;
Raiyn, Jamal ;
Abdallah, Ziyad ;
Rayan, Anwar .
INFLAMMATION RESEARCH, 2018, 67 (01) :67-75