Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and by the accumulation of the pathogenic form of prion protein, designated PrPSc. Recently, we have shown that PrP106-126 induces endoplasmic reticulum (ER) stress, leading to mitochondrial cytochrome c release, caspase 3 activation and apoptotic death. In order to further clarify the role of mitochondria in ER stress-mediated apoptotic pathway triggered by the PrP peptide, we investigated the effects of PrP106-126 on the Ntera2 human teratocarcinoma cell line that had been depleted of their mitochondrial DNA, termed NT2 rho 0 cells, characterized by the absence of functional mitochondria, as well as on the parental NT2 rho+ cells. In this study, we show that PrP106-126 induces ER stress in both cell lines, given that ER Ca2+ content is low, glucose-regulated protein 78 levels are increased and caspase 4 is activated. Furthermore, in parental NT2 rho+ cells, PrP106-126-activated caspase 9 and 3, induced poly (ADP-ribose) polymerase cleavage and increased the number of apoptotic cells. Dantrolene was shown to protect NT2 rho+ from PrP106-126-induced cell death, demonstrating the involvement of Ca2+ release through ER ryanodine receptors. However, in PrP106-126-treated NT2 rho 0 cells, apoptosis was not able to proceed. These results demonstrate that functional mitochondria are required for cell death as a result of ER stress triggered by the PrP peptide, and further elucidate the molecular mechanisms involved in the neuronal loss that occurs in prion disorders.