Designs from subcode supports of linear codes

被引:4
作者
Britz, Thomas [2 ]
Shiromoto, Keisuke [1 ]
机构
[1] Aichi Prefectural Univ, Dept Informat Syst, Aichi 4801198, Japan
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
t-design; linear code; generalized hamming weight; higher weight enumerator; Assmus-Mattson theorem;
D O I
10.1007/s10623-007-9145-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present new constructions of t-designs by considering subcode supports of linear codes over finite fields. In particular, we prove an Assmus-Mattson type theorem for such subcodes, as well as an automorphism characterization. We derive new t-designs (t <= 5) from our constructions.
引用
收藏
页码:175 / 189
页数:15
相关论文
共 22 条
[1]  
Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
[2]   The higher weight enumerators of the doubly-even, self-dual [48,24,12] code [J].
Britz, Dieter ;
Britz, Thomas ;
Shiromoto, Keisuke ;
Sorensen, Henrik Kragh .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) :2567-2571
[3]  
BRITZ T, DESIGNS MATROIDS
[4]   A STRENGTHENING OF THE ASSMUS-MATTSON THEOREM [J].
CALDERBANK, AR ;
DELSARTE, P ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) :1261-1268
[5]  
Colbourn C. J., 2007, HDB COMBINATORIAL DE
[6]  
DOWLING T. A., 1971, ATTI CONVEGNO GEOMET, P209
[7]   The extended quadratic residue code is the only (48,24,12) self-dual doubly-even code [J].
Houghten, SK ;
Lam, CWH ;
Thiel, LH ;
Parker, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) :53-59
[8]  
Huffman W., 2003, FUNDAMENTALS ERROR C
[9]   Designs in additive codes over GF(4) [J].
Kim, JL ;
Pless, V .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 30 (02) :187-199