Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries

被引:153
作者
Yan, Chaoyi [1 ]
Zhu, Pei [1 ]
Jia, Hao [1 ]
Du, Zhuang [1 ]
Zhu, Jiadeng [1 ]
Orenstein, Raphael [1 ]
Cheng, Hui [1 ]
Wu, Nianqiang [2 ]
Dirican, Mahmut [1 ]
Zhang, Xiangwu [1 ]
机构
[1] North Carolina State Univ, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
[2] West Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
关键词
Garnet nanofibers; Composite solid electrolyte; Percolated network; All-solid-state batteries; Rate capability; ION-CONDUCTING MEMBRANE; POLYMER ELECTROLYTES; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIAL; LI7LA3ZR2O12; PERFORMANCE; STABILITY; ENHANCEMENT;
D O I
10.1016/j.ensm.2019.11.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite solid electrolytes (CSEs), which are composed of inorganic fillers and organic polymers, show improved safety and suppressed lithium dendrite growth in Li-metal batteries, as compared to flammable liquid electrolytes. However, the performance of current CSEs is limited by the agglomeration effect, with low content of inorganic Li+-conducting fillers and ineffective Li+ transport between the inorganic fillers and the polymer matrix. To address these challenges, a new type of CSE composed of silane-modified Li6.28La3Al0.24Zr2O12 (s@LLAZO) nanofibers and poly(ethylene glycol) diacrylate (PEGDA) is developed. Employment of the silane coupling agent, 3-(trimethoxysilyl)propyl methacrylate, enables the incorporation of a high content of LLAZO nanofibers (up to 70 wt%) with the polymer matrix and results in a well-percolated, three-dimensional LLAZO network fully embedded in the PEGDA matrix. Consequently, the silane coupling agent successfully eliminates the agglomeration effect, which ensures higher ionic conductivity, larger lithium transference number, wider electrochemical stability window, and better cycling stability for s@LLZAO-PEGDA CSEs. Excellent cycling stability and extraordinarily high rate capability (up to 10C) are demonstrated in the all-solid-state Li-metal batteries with LiFePO4 and high-voltage Li[Ni1/3Mn1/3Co1/3]O-2 cathodes at ambient temperature. This novel design of CSEs with s@LLAZO nanofibers paves the way for a new generation of improved functioning all-solid-state Li-metal batteries.
引用
收藏
页码:448 / 456
页数:9
相关论文
共 51 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[3]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[4]   STEADY-STATE CURRENT FLOW IN SOLID BINARY ELECTROLYTE CELLS [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 225 (1-2) :1-17
[5]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[6]   Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix [J].
Choi, Jeong-Hee ;
Lee, Chul-Ho ;
Yu, Ji-Hyun ;
Doh, Chil-Hoon ;
Lee, Sang-Min .
JOURNAL OF POWER SOURCES, 2015, 274 :458-463
[7]   Trends in polymer electrolytes for secondary lithium batteries [J].
Dias, FB ;
Plomp, L ;
Veldhuis, JBJ .
JOURNAL OF POWER SOURCES, 2000, 88 (02) :169-191
[8]   Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon [J].
Dietrich, Paul M. ;
Glamsch, Stephan ;
Ehlert, Christopher ;
Lippitz, Andreas ;
Kulak, Nora ;
Unger, Wolfgang E. S. .
APPLIED SURFACE SCIENCE, 2016, 363 :406-411
[9]   Composite solid electrolytes for all-solid-state lithium batteries [J].
Dirican, Mahmut ;
Yan, Chaoyi ;
Zhu, Pei ;
Zhang, Xiangwu .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46) :27-46
[10]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)