ICRF modelling in 2D and 3D magnetic configurations using a hot plasma model

被引:6
作者
Machielsen, M. [1 ]
Graves, J. P. [1 ]
Cooper, W. A. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
ICRF; ion cyclotron heating; hot plasma; stellarator; Wendelstein; 7-X; fast ion confinement; anisotropy; GLOBAL WAVES; JET; MINORITY; TOKAMAKS; SIMULATION; IONS;
D O I
10.1088/1361-6587/ac11b2
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generation of energetic trapped ions is important for experiments investigating their confinement in 3D magnetic fields, for plasma heating, for studies into unwanted drive of instabilities, and improved transport regimes. An effective way to generate such energetic ions is with ion cyclotron resonance heating. SCENIC is a tool built to self consistently model the magnetic equilibrium, the radio frequency wave, and the minority distribution function in steady state. In this paper the impact of higher order finite Larmor radius corrections in the dielectric tensor will be described. The RF electric field and the power deposition in the new hot model are compared against the previously used warm model for several JET plasmas. Considerable differences are found in some of the scenarios. The new version of the wave code LEMan also supports the direct use of particle-in-cell marker data to compute the dielectric tensor. An expression for the dielectric tensor is derived, and it is applied to a test case in JET. The power deposition profile agrees very well with that of a Maxwellian reference case, which is promising for future applications. Moreover, a full SCENIC run shows a significantly enhanced fast ion tail. In a demonstration of the novel features of LEMan, it is also applied to minority heating in the intrinsically 3D plasma of W7-X.
引用
收藏
页数:22
相关论文
共 47 条
[1]  
[Anonymous], 2003, Plasma Waves
[2]   Simulations of combined neutral beam injection and ion cyclotron heating with the TORIC-SSFPQL package [J].
Bilato, R. ;
Brambilla, M. ;
Maj, O. ;
Horton, L. D. ;
Maggi, C. F. ;
Stober, J. .
NUCLEAR FUSION, 2011, 51 (10)
[3]   Advances in numerical simulations of ion cyclotron heating of non-Maxwellian plasmas [J].
Brambilla, M. ;
Bilato, R. .
NUCLEAR FUSION, 2009, 49 (08)
[4]   Numerical simulation of ion cyclotron waves in tokamak plasmas [J].
Brambilla, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 (01) :1-34
[5]  
Brambilla M., 1998, Kinetic Theory of Plasma Waves
[6]   Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control and fusion performance in JET [J].
Casson, F. J. ;
Patten, H. ;
Bourdelle, C. ;
Breton, S. ;
Citrin, J. ;
Koechl, F. ;
Sertoli, M. ;
Angioni, C. ;
Baranov, Y. ;
Bilato, R. ;
Belli, E. A. ;
Challis, C. D. ;
Corrigan, G. ;
Czarnecka, A. ;
Ficker, O. ;
Frassinetti, L. ;
Garzotti, L. ;
Goniche, M. ;
Graves, J. P. ;
Johnson, T. ;
Kirov, K. ;
Knight, P. ;
Lerche, E. ;
Mantsinen, M. ;
Mylnar, J. ;
Valisa, M. .
NUCLEAR FUSION, 2020, 60 (06)
[7]   ANISOTROPIC DISTRIBUTION FUNCTION OF MINORITY TAIL IONS GENERATED BY STRONG ION-CYCLOTRON RESONANCE HEATING [J].
CHANG, CS ;
COLESTOCK, P .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (02) :310-317
[8]   Anisotropic pressure bi-Maxwellian distribution function model for three-dimensional equilibria [J].
Cooper, W. A. ;
Graves, J. P. ;
Hirshman, S. P. ;
Yamaguchi, T. ;
Narushima, Y. ;
Okamura, S. ;
Sakakibara, S. ;
Suzuki, C. ;
Watanabe, K. Y. ;
Yamada, H. ;
Yamazaki, K. .
NUCLEAR FUSION, 2006, 46 (07) :683-698
[9]   Three-dimensional anisotropic pressure free boundary equilibria [J].
Cooper, W. A. ;
Hirshman, S. P. ;
Merkel, P. ;
Graves, J. P. ;
Kisslinger, J. ;
Wobig, H. F. G. ;
Narushima, Y. ;
Okamura, S. ;
Watanabe, K. Y. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1524-1533
[10]   A MODEL FOR IDEAL M=1 INTERNAL KINK STABILIZATION BY MINORITY ION-CYCLOTRON RESONANT HEATING [J].
DENDY, RO ;
HASTIE, RJ ;
MCCLEMENTS, KG ;
MARTIN, TJ .
PHYSICS OF PLASMAS, 1995, 2 (05) :1623-1636