Global rough solutions to the critical generalized KdV equation

被引:19
作者
Farah, Luiz Gustavo [1 ,2 ]
机构
[1] ICEx UFMG, Dept Math, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
NONLINEAR SCHRODINGER-EQUATION; BLOW-UP SOLUTIONS; WELL-POSEDNESS; KORTEWEG-DEVRIES; STABILITY; EXISTENCE; SPACE;
D O I
10.1016/j.jde.2010.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the initial value problem (IVP) for the critical generalized KdV equation u(t) + u(xxx) (u(5))(x) = 0 on the real line is globally well-posed in H(s)(R) if s > 3/5 with the appropriate smallness assumption on the initial data. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1968 / 1985
页数:18
相关论文
共 30 条
[2]   On the ill-posedness of the IVP for the generalized Korteweg-DeVries and nonlinear Schrodinger equations [J].
Birnir, B ;
Kenig, CE ;
Ponce, G ;
Svanstedt, N ;
Vega, L .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 :551-559
[3]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[4]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[5]  
Bourgain J., 1999, Amer. Math. Soc. Colloq. Publ., V46
[6]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[7]  
Colliander J, 2008, DISCRETE CONT DYN-A, V21, P665
[8]  
Colliander J, 2002, MATH RES LETT, V9, P659
[9]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[10]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749