Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases

被引:307
作者
Cui, Liang [1 ,2 ]
Lu, Haitao [3 ]
Lee, Yie Hou [1 ,4 ]
机构
[1] KK Womens & Childrens Hosp, Translat Omics & Biomarkers Grp, KK Res Ctr, Singapore, Singapore
[2] Singapore MIT Alliance Res & Technol, Infect Dis Interdisciplinary Res Grp, Singapore, Singapore
[3] Shanghai Jiao Tong Univ, Shanghai Ctr Syst Biomed, Key Lab Syst Biomed, Minist Educ, Shanghai, Peoples R China
[4] Duke NUS Med Sch, OBGYN Acad Clin Program, Singapore, Singapore
基金
英国医学研究理事会;
关键词
disease; liquid chromatography; mass spectrometry; medicine; metabolomics; untargeted metabolomics; PERFORMANCE LIQUID-CHROMATOGRAPHY; RESOLUTION MASS-SPECTROMETRY; GAS-PHASE FRACTIONATION; UROPATHOGENIC ESCHERICHIA-COLI; WEB-BASED TOOL; METABOLITE IDENTIFICATION; HEPATOCELLULAR-CARCINOMA; DEPENDENT ACQUISITION; GLOBAL RECONSTRUCTION; ION CHROMATOGRAPHY;
D O I
10.1002/mas.21562
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
In the past decade, advances in liquid chromatography-mass spectrometry (LC-MS) have revolutionized untargeted metabolomics analyses. By mining metabolomes more deeply, researchers are now primed to uncover key metabolites and their associations with diseases. The employment of untargeted metabolomics has led to new biomarker discoveries and a better mechanistic understanding of diseases with applications in precision medicine. However, many major pertinent challenges remain. First, compound identification has been poor, and left an overwhelming number of unidentified peaks. Second, partial, incomplete metabolomes persist due to factors such as limitations in mass spectrometry data acquisition speeds, wide-range of metabolites concentrations, and cellular/tissue/temporal-specific expression changes that confound our understanding of metabolite perturbations. Third, to contextualize metabolites in pathways and biology is difficult because many metabolites partake in multiple pathways, have yet to be described species specificity, or possess unannotated or more-complex functions that are not easily characterized through metabolomics analyses. From a translational perspective, information related to novel metabolite biomarkers, metabolic pathways, and drug targets might be sparser than they should be. Thankfully, significant progress has been made and novel solutions are emerging, achieved through sustained academic and industrial community efforts in terms of hardware, computational, and experimental approaches. Given the rapidly growing utility of metabolomics, this review will offer new perspectives, increase awareness of the major challenges in LC-MS metabolomics that will significantly benefit the metabolomics community and also the broader the biomedical community metabolomics aspire to serve.
引用
收藏
页码:772 / 792
页数:21
相关论文
共 200 条
[71]  
Kennedy J, 2008, USE GAS PHASE FRACTI, P217
[72]   Genome-wide association study identifies multiple loci influencing human serum metabolite levels [J].
Kettunen, Johannes ;
Tukiainen, Taru ;
Sarin, Antti-Pekka ;
Ortega-Alonso, Alfredo ;
Tikkanen, Emmi ;
Lyytikainen, Leo-Pekka ;
Kangas, Antti J. ;
Soininen, Pasi ;
Wuertz, Peter ;
Silander, Kaisa ;
Dick, Danielle M. ;
Rose, Richard J. ;
Savolainen, Markku J. ;
Viikari, Jorma ;
Kahonen, Mika ;
Lehtimaki, Terho ;
Pietilainen, Kirsi H. ;
Inouye, Michael ;
McCarthy, Mark I. ;
Jula, Antti ;
Eriksson, Johan ;
Raitakari, Olli T. ;
Salomaa, Veikko ;
Kaprio, Jaakko ;
Jarvelin, Marjo-Riitta ;
Peltonen, Leena ;
Perola, Markus ;
Freimer, Nelson B. ;
Ala-Korpela, Mika ;
Palotie, Aarno ;
Ripatti, Samuli .
NATURE GENETICS, 2012, 44 (03) :269-U65
[73]   Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review [J].
Kimhofer, T. ;
Fye, H. ;
Taylor-Robinson, S. ;
Thursz, M. ;
Holmes, E. .
BRITISH JOURNAL OF CANCER, 2015, 112 (07) :1141-1156
[74]   Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry [J].
Kind, Tobias ;
Fiehn, Oliver .
BMC BIOINFORMATICS, 2007, 8 (1)
[75]   Identification of small molecules using accurate mass MS/MS search [J].
Kind, Tobias ;
Tsugawa, Hiroshi ;
Cajka, Tomas ;
Ma, Yan ;
Lai, Zijuan ;
Mehta, Sajjan S. ;
Wohlgemuth, Gert ;
Barupal, Dinesh Kumar ;
Showalter, Megan R. ;
Arita, Masanori ;
Fiehn, Oliver .
MASS SPECTROMETRY REVIEWS, 2018, 37 (04) :513-532
[76]   LipidBlast in silico tandem mass spectrometry database for lipid identification [J].
Kind, Tobias ;
Liu, Kwang-Hyeon ;
Lee, Do Yup ;
DeFelice, Brian ;
Meissen, John K. ;
Fiehn, Oliver .
NATURE METHODS, 2013, 10 (08) :755-+
[77]  
Kind Tobias, 2010, Bioanal Rev, V2, P23, DOI 10.1007/s12566-010-0015-9
[78]   Metabolomic database annotations via query of elemental compositions:: Mass accuracy is insufficient even at less than 1 ppm [J].
Kind, Tobias ;
Fiehn, Oliver .
BMC BIOINFORMATICS, 2006, 7 (1)
[79]   A novel ion pairing LC/MS metabolomics protocol for study of a variety of biologically relevant polar metabolites [J].
Knee, Jose M. ;
Rzezniczak, Teresa Z. ;
Barsch, Aiko ;
Guo, Kevin Z. ;
Merritt, Thomas J. S. .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2013, 936 :63-73
[80]   Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells [J].
Koufaris, C. ;
Valbuena, G. N. ;
Pomyen, Y. ;
Tredwell, G. D. ;
Nevedomskaya, E. ;
Lau, C-H E. ;
Yang, T. ;
Benito, A. ;
Ellis, J. K. ;
Keun, H. C. .
ONCOGENE, 2016, 35 (21) :2766-2776