Engineering of Droplet Charges in Microfluidic Chips

被引:3
作者
He, Rongxiang [1 ,2 ]
Ruan, Meilin [1 ]
Qi, Yuyang [1 ]
Liu, Hongni [1 ]
Zhang, Zhengtao [1 ]
Chen, Chaohui [1 ]
Chao, Yiping [1 ]
Liu, Yumin [1 ,2 ]
Chen, Yong [1 ,3 ]
机构
[1] Jianghan Univ, Minist Educ, Key Lab Optoelect Chem Mat & Devices, Inst Interdisciplinary Res, Wuhan 430056, Peoples R China
[2] Jianghan Univ, Hubei Key Lab Environm & Hlth Effects Persistent, Wuhan 430056, Peoples R China
[3] Ecole Normale Super, Dept Chim, 24 Rue Lhomond, F-75231 Paris 05, France
关键词
droplets; electric double layers; microfluidics; surface modification; GENERATOR; FLOW;
D O I
10.1002/adem.201901521
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Droplet-based technologies, which utilize the surface charge characterization of droplets, are used in fluorescence-activated cell sorting and energy harvesting. Herein, the influence of droplet charges on microchips is investigated via surface engineering. An electrical field is applied to deflect the droplets in a microchannel, thereby enabling a qualitative analysis of the droplet charge. In a glass polydimethylsiloxane (PDMS)-boned microchip, the droplet charge decreases when the microchannel is changed from a single-sided to a three-sided rectangular microstructure. When the ionic concentration of the droplet increases from 1 mu m to 10 mm, droplet charges decrease by approximate to 78%. Meanwhile, a Au film is patterned in the microchannel, and 11-aminoundecanethiol hydrochloride (AUT) and 12-mercaptododecanoic acid (MDA) are modified to modulate the Au surface characterization. Compared with the glass-PDMS-bonded microchannel, the Au film can suppress the streaming potential to decrease the droplet charges. After modification with MDA and AUT, the droplet charges increase. Therefore, the microchannel structures, ionic concentration, and substrate surface properties can be utilized to modulate the droplet charges, which can be widely used in droplet-based energy harvesting and biological and chemical sample sorting.
引用
收藏
页数:7
相关论文
共 34 条
  • [21] Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers
    Mei, Lanju
    Yeh, Li-Hsien
    Qian, Shizhi
    [J]. NANO ENERGY, 2017, 32 : 374 - 381
  • [22] Electrical power generation by mechanically modulating electrical double layers
    Moon, Jong Kyun
    Jeong, Jaeki
    Lee, Dongyun
    Pak, Hyuk Kyu
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [23] Nanofluidic electric generators constructed from boron nitride nanosheet membranes
    Qin, Si
    Liu, Dan
    Chen, Ying
    Chen, Cheng
    Wang, Guang
    Wang, Jiemin
    Razal, Joselito M.
    Lei, Weiwei
    [J]. NANO ENERGY, 2018, 47 : 368 - 373
  • [24] A microfluidic electrostatic separator based on pre-charged droplets
    Rao, Lang
    Cai, Bo
    Wang, Jieli
    Meng, Qianfang
    Ma, Chi
    He, Zhaobo
    Xu, Junhua
    Huang, Qinqin
    Li, Shasha
    Cen, Yi
    Guo, Shishang
    Liu, Wei
    Zhao, Xing-zhong
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2015, 210 : 328 - 335
  • [25] Electrokinetic Streaming-Current Methods to Probe the Electrode-Electrolyte Interface under Applied Potentials
    Saha, Prantik
    Nam, Changwoo
    Hickner, Michael A.
    Zenyuk, Iryna V.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (32) : 19493 - 19505
  • [26] Droplet-based single cell RNAseq tools: a practical guide
    Salomon, Robert
    Kaczorowski, Dominik
    Valdes-Mora, Fatima
    Nordon, Robert E.
    Neild, Adrian
    Farbehi, Nona
    Bartonicek, Nenad
    Gallego-Ortega, David
    [J]. LAB ON A CHIP, 2019, 19 (10) : 1706 - 1727
  • [27] Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter
    Schmid, Lothar
    Weitz, David A.
    Franke, Thomas
    [J]. LAB ON A CHIP, 2014, 14 (19) : 3710 - 3718
  • [28] Dissociation of surface functional groups and preferential adsorption of ions on self-assembled monolayers assessed by streaming potential and streaming current measurements
    Schweiss, R
    Welzel, PB
    Werner, C
    Knoll, W
    [J]. LANGMUIR, 2001, 17 (14) : 4304 - 4311
  • [29] Emerging Droplet Microfluidics
    Shang, Luoran
    Cheng, Yao
    Zhao, Yuanjin
    [J]. CHEMICAL REVIEWS, 2017, 117 (12) : 7964 - 8040
  • [30] Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics
    Tao, Ye
    Rotem, Assaf
    Zhang, Huidan
    Chang, Connie B.
    Basu, Anindita
    Kolawole, Abimbola O.
    Koehler, Stephan A.
    Ren, Yukun
    Lin, Jeffrey S.
    Pipas, James M.
    Feldman, Andrew B.
    Wobus, Christiane E.
    Weitz, David A.
    [J]. LAB ON A CHIP, 2015, 15 (19) : 3934 - 3940