Irregularity of Sierpinski graph

被引:15
作者
Kang, Shin Min [1 ,2 ]
Asghar, Adnan [3 ]
Ahmad, Haseeb [4 ,5 ]
Kwun, Young Chel [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[2] Gyeongsang Natl Univ, RINS, Jinju 52828, South Korea
[3] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[4] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[5] Lahore Leads Univ, Dept Math, Lahore 54810, Pakistan
[6] Dong A Univ, Dept Math, Busan 49315, South Korea
关键词
Sierpinski Gaseket Graph; Generalized Sierpinski Graph; Irregularity Indices; MAXIMUM ABC INDEX;
D O I
10.1080/09720529.2019.1698186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is regular if all of its vertices have equal degree and otherwise, it is an irregular graph. Irregularity topological indices are used for studying irregularly of irregular graphs. These indices are used in different problems of physics, engineering and chemistry. Moreover, irregularity of molecules is useful in for QSAR/QSPR studies. In this paper, we calculated different irregularity indices for Sierpinski Graph.
引用
收藏
页码:1269 / 1280
页数:12
相关论文
共 36 条
[1]   THE TOTAL IRREGULARITY OF GRAPHS UNDER GRAPH OPERATIONS [J].
Abdo, H. ;
Dimitrov, D. .
MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) :3-17
[2]  
Andrae A., 2022, ENG APPL SCI LETT, V5, DOI [10.30538/psrp-easl2022.0085, DOI 10.30538/PSRP-EASL2018.0003]
[3]  
Anjum MS., 2019, ENG APPL SCI LETT, V2, P19, DOI [10.30538/psrp-easl2019.0013, DOI 10.30538/PSRP-EASL2019.0013]
[4]  
[Anonymous], ENG APPL SCI LETT
[5]  
[Anonymous], 2018, ENG APPL SCI LETT, DOI DOI 10.30538/PSRP-EASL2018.0001
[6]   Dimer-monomer model on the Sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (07) :1551-1566
[7]  
DE N, 2018, OPEN J MATH SCI, V2, P338, DOI DOI 10.30538/OMS2018.0039
[8]  
De N., 2018, OPEN J MATH SCI, V2, P1, DOI DOI 10.30538/oms2018.0013
[9]  
Dimitrov D, 2015, ARS MATH CONTEMP, V9, P45
[10]  
Gao W., 2017, OPEN J MATH ANAL, V1, P13, DOI [DOI 10.30538/psrp-oma2017.0002, 10.30538/psrp-oma2017.0002, DOI 10.30538/PSRP-OMA2017.0002]