Chaotic light at mid-infrared wavelength

被引:74
作者
Jumpertz, Louise [1 ,2 ]
Schires, Kevin [1 ]
Carras, Mathieu [2 ]
Sciamanna, Marc [3 ,4 ]
Grillot, Frederic [1 ,5 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, CNRS, LTCI, F-75634 Paris 13, France
[2] mirSense, 86 Rue Paris,Bat Erable, F-91400 Orsay, France
[3] Univ Paris Saclay, LMOPS, Cent Supelec, F-57070 Metz, France
[4] Univ Lorraine, LMOPS, Cent Supelec, F-57070 Metz, France
[5] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
关键词
chaos; nonlinear dynamics; optical feedback; quantum cascade laser; QUANTUM CASCADE LASERS; CONTINUOUS-WAVE OPERATION; SEMICONDUCTOR-LASER; OPTICAL FEEDBACK; HIGH-POWER; INJECTION; LINEWIDTH; MODULATION; EMISSION; DYNAMICS;
D O I
10.1038/lsa.2016.88
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The onset of nonlinear dynamics and chaos is evidenced in a mid-infrared distributed feedback quantum cascade laser both in the temporal and frequency domains. As opposed to the commonly observed route to chaos in semiconductor lasers, which involves undamping of the laser relaxation oscillations, quantum cascade lasers first exhibit regular self-pulsation at the external cavity frequency before entering into a chaotic low-frequency fluctuation regime. The bifurcation sequence, similar to that already observed in class A gas lasers under optical feedback, results from the fast carrier relaxation dynamics occurring in quantum cascade lasers, as confirmed by numerical simulations. Such chaotic behavior can impact various practical applications including spectroscopy, which requires stable single-mode operation. It also allows the development of novel mid-infrared high-power chaotic light sources, thus enabling secure free-space high bit-rate optical communications based on chaos synchronization.
引用
收藏
页码:e16088 / e16088
页数:8
相关论文
共 58 条
[1]   Lang and Kobayashi phase equation [J].
Alsing, PM ;
Kovanis, V ;
Gavrielides, A ;
Erneux, T .
PHYSICAL REVIEW A, 1996, 53 (06) :4429-4434
[2]  
[Anonymous], 2010, Free-Space Laser Communications: Principles and Advances
[3]   Room temperature quantum cascade lasers with 27% wall plug efficiency [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[4]   Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser [J].
Baryshev, A. ;
Hovenier, J. N. ;
Adam, A. J. L. ;
Kasalynas, I. ;
Gao, J. R. ;
Klaassen, T. O. ;
Williams, B. S. ;
Kumar, S. ;
Hu, Q. ;
Reno, J. L. .
APPLIED PHYSICS LETTERS, 2006, 89 (03)
[5]   Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J].
Beck, M ;
Hofstetter, D ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
SCIENCE, 2002, 295 (5553) :301-305
[6]   Free-space optical data link using Peltier-cooled quantum cascade laser [J].
Blaser, S ;
Hofstetter, D ;
Beck, M ;
Faist, J .
ELECTRONICS LETTERS, 2001, 37 (12) :778-780
[7]   Direct link of a mid-infrared QCL to a frequency comb by optical injection [J].
Borri, S. ;
Galli, I. ;
Cappelli, F. ;
Bismuto, A. ;
Bartalini, S. ;
Cancio, P. ;
Giusfredi, G. ;
Mazzotti, D. ;
Faist, J. ;
De Natale, P. .
OPTICS LETTERS, 2012, 37 (06) :1011-1013
[8]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[9]   Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers [J].
Carras, M. ;
Maisons, G. ;
Simozrag, B. ;
Garcia, M. ;
Parillaud, O. ;
Massies, J. ;
Marcadet, X. .
APPLIED PHYSICS LETTERS, 2010, 96 (16)
[10]   Multimode regimes in quantum cascade lasers with optical feedback [J].
Columbo, L. L. ;
Brambilla, M. .
OPTICS EXPRESS, 2014, 22 (09) :10105-10118