A ROBUST AND EFFICIENT IMPLEMENTATION OF LOBPCG

被引:43
作者
Duersch, Jed A. [1 ]
Shao, Meiyue [2 ]
Yang, Chao [2 ]
Gu, Ming [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
关键词
symmetric eigenvalue problem; LOBPCG; numerical stability; BLOCK; EIGENSOLVER; ALGORITHM;
D O I
10.1137/17M1129830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is widely used to compute eigenvalues of large sparse symmetric matrices. The algorithm can suffer from numerical instability if it is not implemented with care. This is especially problematic when the number of eigenpairs to be computed is relatively large. In this paper we propose an improved basis selection strategy based on earlier work by Hetmaniuk and Lehoucq as well as a robust convergence criterion which is backward stable to enhance the robustness. We also suggest several algorithmic optimizations that improve performance of practical LOBPCG implementations. Numerical examples confirm that our approach consistently and significantly outperforms previous competing approaches in both stability and speed.
引用
收藏
页码:C655 / C676
页数:22
相关论文
共 19 条
[1]   A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations [J].
Aktulga, Hasan Metin ;
Afibuzzaman, Md. ;
Williams, Samuel ;
Buluc, Aydin ;
Shao, Meiyue ;
Yang, Chao ;
Ng, Esmond G. ;
Maris, Pieter ;
Vary, James P. .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (06) :1550-1563
[2]  
Anderson E, 1999, LAPACK users' guide, V3rd
[3]  
[Anonymous], 1990, Matrix Perturbation Theory, Computer Science and Scientific Computing
[4]  
[Anonymous], 1965, The algebraic eigenvalue problem
[5]   Anasazi Software for the Numerical Solution of Large-Scale Eigenvalue Problems [J].
Baker, C. G. ;
Hetmaniuk, U. L. ;
Lehoucq, R. B. ;
Thornquist, H. K. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2009, 36 (03)
[6]   Communication lower bounds and optimal algorithms for numerical linear algebra [J].
Ballard, G. ;
Carson, E. ;
Demmel, J. ;
Hoemmen, M. ;
Knight, N. ;
Schwartz, O. .
ACTA NUMERICA, 2014, 23 :1-155
[7]  
Duersch J. A., 2015, THESIS
[8]   An overview of the Sparse Basic Linear Algebra Subprograms: The new standard from the BLAS Technical Forum [J].
Duff, IS ;
Heroux, MA ;
Pozo, R .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :239-267
[9]  
GOLUB H., 2013, Matrix Computations
[10]   Basis selection in LOBPCG [J].
Hetmaniuk, U. ;
Lehoucq, R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) :324-332