Ultrafast real-time tracing of surface electric field generated via hot electron transport in polar semiconductors

被引:6
作者
Choi, In Hyeok [1 ]
Kim, Min Seop [1 ]
Kang, Chul [2 ]
Lee, Jong Seok [1 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea
[2] Gwangju Inst Sci & Technol, Adv Photon Res Inst APRI, Gwangju 61005, South Korea
关键词
Semiconductor; Optical second-harmonic generation; Surface recombination; Surface electric field; Hot electron cooling; Hot electron diffusion; Hot phonon effect; RESOLVED PHOTOLUMINESCENCE; GAAS; CARRIERS; RECOMBINATION; INP; SI;
D O I
10.1016/j.apsusc.2021.151279
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We trace an ultrafast real-space motion of photo-excited free carriers just near the surface of polar semiconductors GaAs and InAs by using the optical second-harmonic generation (SHG) technique. With a flat distribution of photo-carriers as an initial condition, ultrafast diffusion and drift motion followed by a rapid surface recombination develop a surface electric field which is efficiently probed by the electric-field-induced SHG. From the simulation based on the drift-diffusion equation combined with the ensemble Monte-Carlo approach, we could explain the experimental observation of the temporal evolution of the surface electric field, and extract time constants related to the hot electron cooling. Whereas the hot carrier cooling time is determined to be about 8 ps at room temperature for GaAs, it can be further extended to about 35 ps at 100 K due to the increase of the longitudinal optic phonon life time enhancing the hot phonon effect. Our work can be an important guide in designing optoelectronic nano-devices by providing a clear understanding of the ultrafast electron-hole separation near the surface of polar semiconductors in connection with the hot carrier cooling process.
引用
收藏
页数:7
相关论文
共 31 条
[1]   THz emitters based on the photo-Dember effect [J].
Apostolopoulos, V. ;
Barnes, M. E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (37)
[2]   OPTICAL-PROPERTIES OF ALXGA1-XAS [J].
ASPNES, DE ;
KELSO, SM ;
LOGAN, RA ;
BHAT, R .
JOURNAL OF APPLIED PHYSICS, 1986, 60 (02) :754-767
[3]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[4]   Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP [J].
Clady, Raphael ;
Tayebjee, Murad J. Y. ;
Aliberti, Pasquale ;
Koenig, Dirk ;
Ekins-Daukes, Nicholas John ;
Conibeer, Gavin J. ;
Schmidt, Timothy W. ;
Green, Martin A. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :82-92
[5]   GaAs/AlGaAs Nanowire Photodetector [J].
Dai, Xing ;
Zhang, Sen ;
Wang, Zilong ;
Adamo, Giorgio ;
Liu, Hai ;
Huang, Yizhong ;
Couteau, Christophe ;
Soci, Cesare .
NANO LETTERS, 2014, 14 (05) :2688-2693
[6]   A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons [J].
Farrell, Daniel J. ;
Sodabanlu, Hassanet ;
Wang, Yunpeng ;
Sugiyama, Masakazu ;
Okada, Yoshitaka .
NATURE COMMUNICATIONS, 2015, 6
[7]   Hot carrier cooling mechanisms in halide perovskites [J].
Fu, Jianhui ;
Xu, Qiang ;
Han, Guifang ;
Wu, Bo ;
Huan, Cheng Hon Alfred ;
Leek, Meng Lee ;
Sum, Tze Chien .
NATURE COMMUNICATIONS, 2017, 8
[8]   Depletion-electric-field-induced second-harmonic generation near oxidized GaAs(001) surfaces [J].
Germer, TA ;
Kolasinski, KW ;
Stephenson, JC ;
Richter, LJ .
PHYSICAL REVIEW B, 1997, 55 (16) :10694-10706
[9]   TUNNELING HOT-ELECTRON TRANSFER AMPLIFIER - A HOT-ELECTRON GAAS DEVICE WITH CURRENT GAIN [J].
HEIBLUM, M ;
THOMAS, DC ;
KNOEDLER, CM ;
NATHAN, MI .
APPLIED PHYSICS LETTERS, 1985, 47 (10) :1105-1107
[10]   Interband resonances in the optical second-harmonic response of the (001) GaAs-oxide interface [J].
Janz, S ;
Lu, ZH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (07) :1647-1650