Study of hydrogen isotopes behavior in tungsten by a multi trapping macroscopic rate equation model

被引:44
作者
Hodille, E. A. [1 ]
Ferro, Y. [2 ]
Fernandez, N. [2 ]
Becquart, C. S. [3 ]
Angot, T. [2 ]
Layet, J. M. [2 ]
Bisson, R. [2 ]
Grisolia, C. [1 ]
机构
[1] CEA Cadarache, IFRM, F-13108 St Paul Les Durance, France
[2] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13397 Marseille, France
[3] Univ Lille 1, ENSCL, UMET, UMR 8207, F-59655 Villeneuve Dascq, France
关键词
tungsten; vacancy; fuel retention; DEUTERIUM RETENTION; THERMAL-DESORPTION; DIFFUSION; VACANCY; RELEASE;
D O I
10.1088/0031-8949/2016/T167/014011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Density functional theory (DFT) studies show that in tungsten a mono vacancy can contain up to six hydrogen isotopes (HIs) at 300 K with detrapping energies varying with the number of HIs in the vacancy. Using these predictions, a multi trapping rate equation model has been built and used to model thermal desorption spectrometry (TDS) experiments performed on single crystal tungsten after deuterium ions implantation. Detrapping energies obtained from the model to adjust temperature of TDS spectrum observed experimentally are in good agreement with DFT values within a deviation below 10%. The desorption spectrum as well as the diffusion of deuterium in the bulk are rationalized in light of the model results.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature [J].
Bisson, R. ;
Markelj, S. ;
Mourey, O. ;
Ghiorghiu, F. ;
Achkasov, K. ;
Layet, J. -M. ;
Roubin, P. ;
Cartry, G. ;
Grisolia, C. ;
Angot, T. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :432-438
[2]   Rate equations modeling for hydrogen inventory studies during a real tokamak material thermal cycle [J].
Bonnin, X. ;
Hodille, E. ;
Ning, N. ;
Sang, C. ;
Grisolia, Ch. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :970-973
[3]   Hydrogen diffusion and vacancies formation in tungsten: Density Functional Theory calculations and statistical models [J].
Fernandez, N. ;
Ferro, Y. ;
Kato, D. .
ACTA MATERIALIA, 2015, 94 :307-318
[4]   Re-emission and thermal desorption of deuterium from plasma sprayed tungsten coatings for application in ASDEX-upgrade [J].
GarciaRosales, C ;
Franzen, P ;
Plank, H ;
Roth, J ;
Gauthier, E .
JOURNAL OF NUCLEAR MATERIALS, 1996, 233 :803-808
[5]   Hydrogen interaction with point defects in tungsten [J].
Heinola, K. ;
Ahlgren, T. ;
Nordlund, K. ;
Keinonen, J. .
PHYSICAL REVIEW B, 2010, 82 (09)
[6]   Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials [J].
Hodille, E. A. ;
Bonnin, X. ;
Bisson, R. ;
Angot, T. ;
Becquart, C. S. ;
Layet, J. M. ;
Grisolia, C. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :424-431
[7]   Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion [J].
Johnson, Donald F. ;
Carter, Emily A. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (02) :315-327
[8]   Mechanism of vacancy formation induced by hydrogen in tungsten [J].
Liu, Yi-Nan ;
Ahlgren, T. ;
Bukonte, L. ;
Nordlund, K. ;
Shu, Xiaolin ;
Yu, Yi ;
Li, Xiao-Chun ;
Lu, Guang-Hong .
AIP ADVANCES, 2013, 3 (12)
[9]  
MCNABB A, 1963, T METALL SOC AIME, V227, P618
[10]   Hydrogen induced vacancy formation in tungsten [J].
Middleburgh, S. C. ;
Voskoboinikov, R. E. ;
Guenette, M. C. ;
Riley, D. P. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 448 (1-3) :270-275