Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States

被引:64
作者
Schwarz, F. [1 ,2 ]
Weymann, I [3 ]
von Delft, J. [1 ,2 ]
Weichselbaum, A. [1 ,2 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Phys Dept, Theresienstr 37, D-80333 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Ctr NanoSci, Theresienstr 37, D-80333 Munich, Germany
[3] Adam Mickiewicz Univ, Fac Phys, Umultowska 85, PL-61614 Poznan, Poland
[4] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
关键词
RENORMALIZATION-GROUP; ANDERSON MODEL; KONDO; SYSTEMS; DOT;
D O I
10.1103/PhysRevLett.121.137702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The numerical renormalization group (NRG) is tailored to describe interacting impurity models in equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias voltage. We show that these limitations can be overcome by describing the thermal leads using a thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium dynamics at low energies using a quench protocol, implemented using the time-dependent density matrix renormalization group. This yields quantitatively reliable results for the current (with errors less than or similar to 3%) down to the exponentially small energy scales characteristic of impurity models. We present results of benchmark quality for the temperature and magnetic field dependence of the zero-bias conductance peak for the single-impurity Anderson model.
引用
收藏
页数:7
相关论文
共 57 条
[11]   Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states [J].
Corboz, Philippe ;
Orus, Roman ;
Bauer, Bela ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2010, 81 (16)
[12]   A tunable Kondo effect in quantum dots [J].
Cronenwett, SM ;
Oosterkamp, TH ;
Kouwenhoven, LP .
SCIENCE, 1998, 281 (5376) :540-544
[13]   Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems [J].
Cui, Jian ;
Cirac, J. Ignacio ;
Banuls, Mari Carmen .
PHYSICAL REVIEW LETTERS, 2015, 114 (22)
[14]   Transport properties and Kondo correlations in nanostructures: Time-dependent DMRG method applied to quantum dots coupled to Wilson chains [J].
da Silva, Luis G. G. V. D. ;
Heidrich-Meisner, F. ;
Feiguin, A. E. ;
Buesser, C. A. ;
Martins, G. B. ;
Anda, E. V. ;
Dagotto, E. .
PHYSICAL REVIEW B, 2008, 78 (19)
[15]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[16]  
Das A., 2000, QUANTUM FIELD THEORY, P383
[17]   Thermofield-based chain-mapping approach for open quantum systems [J].
de Vega, Ines ;
Banuls, Mari-Carmen .
PHYSICAL REVIEW A, 2015, 92 (05)
[18]   Auxiliary master equation approach within matrix product states: Spectral properties of the nonequilibrium Anderson impurity model [J].
Dorda, Antonius ;
Ganahl, Martin ;
Evertz, Hans Gerd ;
von der Linden, Wolfgang ;
Arrigoni, Enrico .
PHYSICAL REVIEW B, 2015, 92 (12)
[19]   Comparative study of theoretical methods for non-equilibrium quantum transport [J].
Eckel, J. ;
Heidrich-Meisner, F. ;
Jakobs, S. G. ;
Thorwart, M. ;
Pletyukhov, M. ;
Egger, R. .
NEW JOURNAL OF PHYSICS, 2010, 12
[20]   At which magnetic field, exactly, does the Kondo resonance begin to split? A Fermi liquid description of the low-energy properties of the Anderson model [J].
Filippone, Michele ;
Moca, Catalin Pascu ;
Weichselbaum, Andreas ;
von Delft, Jan ;
Mora, Christophe .
PHYSICAL REVIEW B, 2018, 98 (07)