Nonequilibrium Steady-State Transport in Quantum Impurity Models: A Thermofield and Quantum Quench Approach Using Matrix Product States

被引:64
作者
Schwarz, F. [1 ,2 ]
Weymann, I [3 ]
von Delft, J. [1 ,2 ]
Weichselbaum, A. [1 ,2 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Phys Dept, Theresienstr 37, D-80333 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Ctr NanoSci, Theresienstr 37, D-80333 Munich, Germany
[3] Adam Mickiewicz Univ, Fac Phys, Umultowska 85, PL-61614 Poznan, Poland
[4] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
关键词
RENORMALIZATION-GROUP; ANDERSON MODEL; KONDO; SYSTEMS; DOT;
D O I
10.1103/PhysRevLett.121.137702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The numerical renormalization group (NRG) is tailored to describe interacting impurity models in equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias voltage. We show that these limitations can be overcome by describing the thermal leads using a thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium dynamics at low energies using a quench protocol, implemented using the time-dependent density matrix renormalization group. This yields quantitatively reliable results for the current (with errors less than or similar to 3%) down to the exponentially small energy scales characteristic of impurity models. We present results of benchmark quality for the temperature and magnetic field dependence of the zero-bias conductance peak for the single-impurity Anderson model.
引用
收藏
页数:7
相关论文
共 57 条
[1]   Steady-state currents through nanodevices: A scattering-states numerical renormalization-group approach to open quantum systems [J].
Anders, Frithjof B. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[2]   Voltage Quench Dynamics of a Kondo System [J].
Antipov, Andrey E. ;
Dong, Qiaoyuan ;
Gull, Emanuel .
PHYSICAL REVIEW LETTERS, 2016, 116 (03)
[3]   LIOUVILLE SPACE DESCRIPTION OF THERMOFIELDS AND THEIR GENERALIZATIONS [J].
BARNETT, SM ;
DALTON, BJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02) :411-418
[4]   Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group [J].
Barthel, Thomas ;
Schollwoeck, Ulrich ;
White, Steven R. .
PHYSICAL REVIEW B, 2009, 79 (24)
[5]   Out-of-equilibrium dynamics in a quantum impurity model: Numerics for particle transport and entanglement entropy [J].
Bidzhiev, Kemal ;
Misguich, Gregoire .
PHYSICAL REVIEW B, 2017, 96 (19)
[6]   Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures [J].
Boulat, E. ;
Saleur, H. ;
Schmitteckert, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[7]   Conductance of inhomogeneous systems: Real-time dynamics [J].
Branschaedel, Alexander ;
Schneider, Guenter ;
Schmitteckert, Peter .
ANNALEN DER PHYSIK, 2010, 522 (09) :657-678
[8]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[9]   Alternative discretization in the numerical renormalization-group method [J].
Campo, VL ;
Oliveira, LN .
PHYSICAL REVIEW B, 2005, 72 (10)
[10]   Green's Functions from Real-Time Bold-Line Monte Carlo Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity Model [J].
Cohen, Guy ;
Gull, Emanuel ;
Reichman, David R. ;
Millis, Andrew J. .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)