Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime

被引:35
作者
Liu, Y. B. [1 ]
Li, S. X. [1 ]
Li, Y. D. [1 ]
Yang, Z. G. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 528卷 / 03期
关键词
GBF size; Very high cycle fatigue; Inclusion size; Hydrogen; CHROMIUM-BEARING STEEL; SUBSURFACE CRACK INITIATION; LONG-LIFE FATIGUE; FUEL-CELL SYSTEM; GIGACYCLE FATIGUE; INCLUSION SIZE; SPRING STEEL; BEHAVIOR; MECHANISM; HYDROGEN;
D O I
10.1016/j.msea.2010.10.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influences of major factors including applied stress amplitude, inclusion size and hydrogen content on granular-bright-facet (GBF) size of high strength steels in the very high cycle fatigue regime were studied in this article. It was found that the GBF size is determined by the applied stress amplitude and material hardness. If the applied stress amplitude is lower, the GBF size is larger. When a specimen containing bigger inclusions, the applied stress amplitude to form GBF can be reduced which results in the increase of GBF size. Hydrogen has different effects on the GBF size. The related reasons were discussed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:935 / 942
页数:8
相关论文
共 36 条
[1]   Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime [J].
Akiniwa, Y. ;
Stanzl-Tschegg, S. ;
Mayer, H. ;
Wakita, M. ;
Tanaka, K. .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (12) :2057-2063
[2]   Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime [J].
Akiniwa, Yoshiaki ;
Miyamoto, Nobuyuki ;
Tsuru, Hirotaka ;
Tanaka, Keisuke .
INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (11) :1555-1565
[3]  
Bathias C, 1999, FATIGUE FRACT ENG M, V22, P559, DOI 10.1046/j.1460-2695.1999.00183.x
[4]   Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions [J].
Chapetti, MD ;
Tagawa, T ;
Miyata, T .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 356 (1-2) :236-244
[5]   Ultra-long cycle fatigue of high-strength carbon steels part I: review and analysis of the mechanism of failure [J].
Chapetti, MD ;
Tagawa, T ;
Miyata, T .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 356 (1-2) :227-235
[6]   Specimen size effects on gigacycle fatigue properties of high-strength steel under ultrasonic fatigue testing [J].
Furuya, Y. .
SCRIPTA MATERIALIA, 2008, 58 (11) :1014-1017
[7]   Gigacycle fatigue properties of high-strength steels according to inclusion and ODA sizes [J].
Furuya, Y. ;
Hirukawa, H. ;
Kimura, T. ;
Hayaishi, M. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (08) :1722-1730
[8]   Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz [J].
Furuya, Y ;
Matsuoka, S ;
Abe, T ;
Yamaguchi, K .
SCRIPTA MATERIALIA, 2002, 46 (02) :157-162
[9]   Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel [J].
Li, W. ;
Sakai, T. ;
Li, Q. ;
Lu, L. T. ;
Wang, P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (07) :1096-1107
[10]   The influence of hydrogen on very high properties of high strength spring cycle fatigue steel [J].
Li, Y. D. ;
Yang, Z. G. ;
Liu, Y. B. ;
Li, S. X. ;
Li, G. Y. ;
Hui, W. J. ;
Weng, Y. Q. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 489 (1-2) :373-379