Analytical Drain Current Model of 1-D Ballistic Schottky-Barrier Transistors

被引:15
作者
Bejenari, Igor [1 ,2 ]
Schroeter, Michael [1 ,3 ]
Claus, Martin [1 ,4 ]
机构
[1] Tech Univ Dresden, Chair Electron Devices & Integrated Circuits, Dept Elect & Comp Engn, D-01062 Dresden, Germany
[2] Moldavian Acad Sci, Inst Elect Engn & Nanotechnol, MD-2028 Kishinev, Moldova
[3] Univ Calif San Diego, Dept Elect & Commun Engn, La Jolla, CA 92093 USA
[4] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
关键词
Analytical transport model; carbon nanotube FET (CNTFET); Schottky barrier (SB); tunneling; Wentzel-Kramers-Brillouin (WKB) approximation; FIELD-EFFECT TRANSISTORS; CARBON-NANOTUBE FETS; VIRTUAL-SOURCE MODEL; INCLUDING NONIDEALITIES; COMPACT MODEL; PART II; GATE; PERFORMANCE; TRANSPORT; DESIGN;
D O I
10.1109/TED.2017.2721540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new analytical model based on the Wentzel-Kramers-Brillouin approximation for MOSFET-like 1-D ballistic transistors with Schottky-Barrier contacts has been developed for the drain current. By using a proper approximation of both the Fermi-Dirac distribution function and transmission probability, an analytical solution for the Landauer integral was obtained, which overcomes the limitations of existing models and extends their applicability toward high bias voltages needed for analog applications. The simulations of transfer and output characteristics are found to be in agreementwith the experimental data for sub10-nm carbon-nanotube FETs.
引用
收藏
页码:3904 / 3911
页数:8
相关论文
共 55 条
[1]  
Balestra F., 2013, Nanoscale CMOS: innovative materials, modeling and characterization
[2]   Multichannel carbon-nanotube FETs and complementary logic gates with nanowelded contacts [J].
Chen, Changxin ;
Xu, Dong ;
Kong, Eric Siu-Wai ;
Zhang, Yafei .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (10) :852-855
[3]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[4]  
Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624
[5]   A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application - Part II: Full device model and circuit performance benchmarking [J].
Deng, Jie ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (12) :3195-3205
[6]   Modeling and analysis of planar-gate electrostatic capacitance of 1-D FET with multiple cylindrical conducting channels [J].
Deng, Jie ;
Wong, H.-S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2377-2385
[7]   Towards an optimal contact metal for CNTFETs [J].
Fediai, Artem ;
Ryndyk, Dmitry A. ;
Seifert, Gotthard ;
Mothes, Sven ;
Claus, Martin ;
Schroeter, Michael ;
Cuniberti, Gianaurelio .
NANOSCALE, 2016, 8 (19) :10240-10251
[8]   Sub-10 nm Carbon Nanotube Transistor [J].
Franklin, Aaron D. ;
Luisier, Mathieu ;
Han, Shu-Jen ;
Tulevski, George ;
Breslin, Chris M. ;
Gignac, Lynne ;
Lundstrom, Mark S. ;
Haensch, Wilfried .
NANO LETTERS, 2012, 12 (02) :758-762
[9]  
Franklin AD, 2010, NAT NANOTECHNOL, V5, P858, DOI [10.1038/nnano.2010.220, 10.1038/NNANO.2010.220]
[10]   Computationally efficient physics-based compact CNTFET model for circuit design [J].
Fregonese, Sebastien ;
d'Honincthun, Hugues Cazin ;
Goguet, Johnny ;
Maneux, Cristell ;
Zimmer, Thomas ;
Bourgoin, Jean-Philippe ;
Dollfus, Philippe ;
Galdin-Retailleau, Sylvie .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (06) :1317-1327