Higher dimensional polarized varieties with non-integral nefvalue

被引:4
作者
Beltrametti, MC [1 ]
Di Termini, S [1 ]
机构
[1] Dipartimento Matemat, I-16146 Genoa, Italy
关键词
complex polarized n-fold; ample line bundle; nefvalue; nefvalue morphism; Gorenstein; terminal; Q-factorial singularities; adjunction theory; special varieties;
D O I
10.1515/advg.2003.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an n-dimensional normal projective variety with terminal, Gorenstein, Q-factorial singularities. Let L be an ample line bundle on X. Let tau be the nefvalue of (X; L). Then we classify (X; L), describing the structure of the nefvalue morphism of (X; L), when tau satisfies n - k < tau < n - k + 1 and n greater than or equal to 2k - 3, k greater than or equal to 4. In the smooth case, we discuss the case n = 2k - 4, k greater than or equal to 5, as well.
引用
收藏
页码:287 / 299
页数:13
相关论文
共 13 条
[1]   CONTRACTIONS OF GORENSTEIN POLARIZED VARIETIES WITH HIGH NEF VALUE [J].
ANDREATTA, M .
MATHEMATISCHE ANNALEN, 1994, 300 (04) :669-679
[2]  
Andreatta M, 1998, J ALGEBRAIC GEOM, V7, P253
[3]  
Beltrametti M. C., 1995, The adjunction theory of complex projective varieties, volume, V16
[4]   A REMARK ON THE KAWAMATA RATIONALITY THEOREM [J].
BELTRAMETTI, MC ;
SOMMESE, AJ .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1993, 45 (03) :557-568
[5]  
FUJITA T, 1990, LECT NOTES MATH, V1417, P117
[6]   ON KODAIRA ENERGY AND ADJOINT REDUCTION OF POLARIZED MANIFOLDS [J].
FUJITA, T .
MANUSCRIPTA MATHEMATICA, 1992, 76 (01) :59-84
[7]  
Fujita T., 1990, Classification theories of polarized varieties, DOI DOI 10.1017/CBO9780511662638
[8]  
Kawamata Y., 1987, ADV STUDIES PURE MAT, V10, P283
[10]  
MUKAI S, 1988, NEW CLASSIFICATION F, V3