Complete Biosynthesis of Erythromycin A and Designed Analogs Using E. coli as a Heterologous Host

被引:89
作者
Zhang, Haoran [1 ]
Wang, Yong [1 ,2 ]
Wu, Jiequn [1 ,2 ]
Skalina, Karin [1 ]
Pfeifer, Blaine A. [1 ]
机构
[1] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA
[2] E China Univ Sci & Technol, Natl Engn Res Ctr Biotechnol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
来源
CHEMISTRY & BIOLOGY | 2010年 / 17卷 / 11期
关键词
POLYKETIDE SYNTHASE; SACCHAROPOLYSPORA-ERYTHRAEA; ESCHERICHIA-COLI; GENE-CLUSTER; EXPRESSION; POTENT; 6-DEOXYERYTHRONOLIDE-B; ANTIBIOTICS; SPECIFICITY; RESISTANT;
D O I
10.1016/j.chembiol.2010.09.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Erythromycin A is a potent antibiotic long-recognized as a therapeutic option for bacterial infections. The soil-dwelling bacterium Saccharopolyspora erythraea natively produces erythromycin A from a 55 kb gene cluster composed of three large polyketide synthase genes (each similar to 10 kb) and 17 additional genes responsible for deoxysugar biosynthesis, macrolide tailoring, and resistance. In this study, the erythromycin A gene cluster was systematically transferred from S. erythraea to E. coli for reconstituted biosynthesis, with titers reaching 10 mg/l. Polyketide biosynthesis was then modified to allow the production of two erythromycin analogs. Success establishes E. coli as a viable option for the heterologous production of erythromycin A and more broadly as a platform for the directed production of erythromycin analogs.
引用
收藏
页码:1232 / 1240
页数:9
相关论文
共 39 条
[1]   The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates [J].
Admiraal, SJ ;
Walsh, CT ;
Khosla, C .
BIOCHEMISTRY, 2001, 40 (20) :6116-6123
[2]   Improved Catalytic Activity of a Purified Multienzyme from a Modular Polyketide Synthase after Coexpression with Streptomyces Chaperonins in Escherichia coli [J].
Betancor, Lorena ;
Fernandez, Maria-Jose ;
Weissman, Kira J. ;
Leadlay, Peter F. .
CHEMBIOCHEM, 2008, 9 (18) :2962-2966
[3]   Substrate Specificity of the Macrolide-Glycosylating Enzyme Pair DesVII/DesVIII: Opportunities, Limitations, and Mechanistic Hypotheses [J].
Borisova, SA ;
Zhang, CS ;
Takahashi, H ;
Zhang, H ;
Wong, AW ;
Thorson, JS ;
Liu, HW .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (17) :2748-2753
[4]   AN UNUSUALLY LARGE MULTIFUNCTIONAL POLYPEPTIDE IN THE ERYTHROMYCIN-PRODUCING POLYKETIDE SYNTHASE OF SACCHAROPOLYSPORA-ERYTHRAEA [J].
CORTES, J ;
HAYDOCK, SF ;
ROBERTS, GA ;
BEVITT, DJ ;
LEADLAY, PF .
NATURE, 1990, 348 (6297) :176-178
[5]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[6]   Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens [J].
Denis, A ;
Agouridas, C ;
Auger, JM ;
Benedetti, Y ;
Bonnefoy, A ;
Bretin, F ;
Chantot, JF ;
Dussarat, A ;
Fromentin, C ;
D'Ambrières, SG ;
Lachaud, S ;
Laurin, P ;
Le Martret, O ;
Loyau, V ;
Tessot, N ;
Pejac, JM ;
Perron, S .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1999, 9 (21) :3075-3080
[7]   MODULAR ORGANIZATION OF GENES REQUIRED FOR COMPLEX POLYKETIDE BIOSYNTHESIS [J].
DONADIO, S ;
STAVER, MJ ;
MCALPINE, JB ;
SWANSON, SJ ;
KATZ, L .
SCIENCE, 1991, 252 (5006) :675-679
[8]   Antibiotics for Emerging Pathogens [J].
Fischbach, Michael A. ;
Walsh, Christopher T. .
SCIENCE, 2009, 325 (5944) :1089-1093
[9]   Analysis of eryBI eryBIII and eryBVII from the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea [J].
Gaisser, S ;
Böhm, GA ;
Doumith, M ;
Raynal, MC ;
Dhillon, N ;
Cortés, J ;
Leadlay, PF .
MOLECULAR AND GENERAL GENETICS, 1998, 258 (1-2) :78-88
[10]   CODON USAGE IN BACTERIA - CORRELATION WITH GENE EXPRESSIVITY [J].
GOUY, M ;
GAUTIER, C .
NUCLEIC ACIDS RESEARCH, 1982, 10 (22) :7055-7074