An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-Lipschitzian adsorption kinetics

被引:19
作者
Barrett, JW
Knabner, P
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Erlangen Nurnberg, Inst Angew Matemat, D-91058 Erlangen, Germany
关键词
finite elements; error analysis; Lagrange-Galerkin; modified method of characteristics; convection-dominated flow; degenerate parabolic systems; porous medium;
D O I
10.1137/S0036142996301512
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Lagrange-Galerkin finite element approximation by continuous piecewise linears in space of the following problem: Given Ohm subset of R-d; 1 less than or equal to d less than or equal to 3, find u(x, t) and v(x, t) such that partial derivative(t)u + partial derivative(t)upsilon ? <(del)under bar>. ((D) double under bar<(del)under bar>u) + (q) under bar.<(del)under bar>u = f in Ohm x (0; T], partial derivative(t)upsilon = k(phi(u) ? upsilon) in Omega x (0; T], u((u) under bar, 0) = g(1) ((x) under bar); upsilon((x) under bar, 0) = g(2)((x) under bar) For All (x) under bar is an element of Omega, with periodic boundary conditions. Here k is an element of R+ and the spatial differential operator is uniformly elliptic, but phi is an element of C-0 (R) boolean AND C-1 (-infinity, 0] boolean OR (0, infinity) is a monotonically increasing function satisfying phi(0) = 0, which is only locally Holder continuous, with exponent p is an element of (0, 1) at the origin; e.g., phi(s) := [s](+)(p). We obtain error bounds which improve on those in the literature.
引用
收藏
页码:1862 / 1882
页数:21
相关论文
共 12 条
[1]   Finite element approximation of the transport of reactive solutes in porous media .1. Error estimates for nonequilibrium adsorption processes [J].
Barrett, JW ;
Knabner, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :201-227
[2]  
BARRETT JW, 1995, MATH MODELING FLOW P, P75
[3]   CHARACTERISTIC-GALERKIN METHODS FOR CONTAMINANT TRANSPORT WITH NONEQUILIBRIUM ADSORPTION-KINETICS [J].
DAWSON, CN ;
VANDUIJN, CJ ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :982-999
[4]   NUMERICAL-METHODS FOR CONVECTION-DOMINATED DIFFUSION-PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE-ELEMENT OR FINITE-DIFFERENCE PROCEDURES [J].
DOUGLAS, J ;
RUSSELL, TF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :871-885
[5]  
Gilbarg D., 2015, Elliptic Partial Differential Equations of Second Order
[6]  
KNABNER P, 1994, WATER TRANS, V12, P299
[7]  
KNABNER P, 1991, METHODEN VERFAHREN M, V36
[8]  
Kufner A., 1977, FUNCTION SPACES
[9]  
Ladyzenskaja O. A., 1968, Linear and Quasi-linear Equation of Parabolic Type
[10]   ON THE TRANSPORT-DIFFUSION ALGORITHM AND ITS APPLICATIONS TO THE NAVIER-STOKES EQUATIONS [J].
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1982, 38 (03) :309-332