Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis

被引:172
作者
Li, Heng [1 ]
Yu, Xiao-Hua [2 ]
Ou, Xiang [3 ]
Ouyang, Xin-Ping [4 ]
Tang, Chao-Ke [1 ]
机构
[1] Univ South China, Hengyang Med Coll,Hunan Int Sci & Technol Coopera, Hunan Prov Cooperat Innovat Ctr Mol Target New Dr, Inst Cardiovasc Dis,Key Lab Arteriosclerol Hunan, Hengyang 421001, Hunan, Peoples R China
[2] Hainan Med Univ, Affiliated Hosp 2, Inst Clin Med, Haikou 460106, Hainan, Peoples R China
[3] First Hosp Changsha, Dept Endocrinol, Changsha 410005, Hunan, Peoples R China
[4] Univ South China, Hengyang Med Coll, Hunan Prov Cooperat Innovat Ctr Mol Target New Dr, Dept Physiol,Inst Neurosci Res,Hengyang Key Lab N, Hengyang 421001, Hunan, Peoples R China
关键词
NAFLD; Atherosclerosis; Hepatic cholesterol transport; Cholesterol homeostasis; Cholesterol metabolism; DENSITY-LIPOPROTEIN RECEPTOR; ATP-BINDING CASSETTE; HMG-COA REDUCTASE; B-TYPE-I; APOLIPOPROTEIN-A-I; REGULATORY PROTEIN STAR; CORONARY-ARTERY-DISEASE; BILE-ACID SYNTHESIS; STEROL-INDUCED DEGRADATION; SELECTIVE LIPID UPTAKE;
D O I
10.1016/j.plipres.2021.101109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol meta-bolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
引用
收藏
页数:26
相关论文
共 479 条
[1]   Non-alcoholic Fatty Liver Disease and Its Links with Inflammation and Atherosclerosis [J].
Abdallah, Luan Rodrigues ;
de Matos, Ricardo Cardoso ;
e Souza, Yves Pacheco Dias March ;
Vieira-Soares, Debora ;
Muller-Machado, Gabriela ;
Pollo-Flores, Priscila .
CURRENT ATHEROSCLEROSIS REPORTS, 2020, 22 (01)
[2]   ZFP36L1 and ZFP36L2 control LDLR mRNA stability via the ERK-RSK pathway [J].
Adachi, Shungo ;
Homoto, Masae ;
Tanaka, Rikou ;
Hioki, Yusaku ;
Murakami, Hiroshi ;
Suga, Hiroaki ;
Matsumoto, Masaki ;
Nakayama, Keiichi I. ;
Hatta, Tomohisa ;
Iemura, Shun-ichiro ;
Natsume, Tohru .
NUCLEIC ACIDS RESEARCH, 2014, 42 (15) :10037-10049
[3]   Treatment of non-alcoholic fatty liver disease [J].
Adams, LA ;
Angulo, P .
POSTGRADUATE MEDICAL JOURNAL, 2006, 82 (967) :315-322
[4]   IDOL G51S Variant Is Associated With High Blood Cholesterol and Increases Low-Density Lipoprotein Receptor Degradation [J].
Adi, Dilare ;
Lu, Xiao-Yi ;
Fu, Zhen-Yan ;
Wei, Jian ;
Baituola, Gulinaer ;
Meng, Ya-Jie ;
Zhou, Yu-Xia ;
Hu, Ao ;
Wang, Jin-Kai ;
Lu, Xiang-Feng ;
Wang, Yan ;
Song, Bao-Liang ;
Ma, Yi-Tong ;
Luo, Jie .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2019, 39 (12) :2468-2479
[5]   Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis [J].
Aguilar-Ballester, Maria ;
Herrero-Cervera, Andrea ;
Vinue, Angela ;
Martinez-Hervas, Sergio ;
Gonzalez-Navarro, Herminia .
NUTRIENTS, 2020, 12 (07) :1-19
[6]   The R230C variant of the ATP binding cassette protein A1 (ABCA1) gene is associated with a decreased response to glyburide therapy in patients with type 2 diabetes mellitus [J].
Aguilar-Salinas, Carlos A. ;
Liliana Munoz-Hernandez, Linda ;
Cobos-Bonilla, Monica ;
Rafael Ramirez-Marquez, Marcos ;
Luisa Ordonez-Sanchez, Maria ;
Mehta, Roopa ;
Medina-Santillan, Roberto ;
Teresa Tusie-Luna, Maria .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2013, 62 (05) :638-641
[7]   Genetic depletion of Soat2 diminishes hepatic steatosis via genes regulating de novo lipogenesis and by GLUT2 protein in female mice [J].
Ahmed, O. ;
Pramfalk, C. ;
Pedrelli, M. ;
Olin, M. ;
Steffensen, K. R. ;
Eriksson, M. ;
Parini, P. .
DIGESTIVE AND LIVER DISEASE, 2019, 51 (07) :1016-1022
[8]   Human scavenger receptor class b type 1 is regulated by activators of peroxisome proliferators-activated receptor-γ in hepatocytes [J].
Ahmed, Rania Abdel Muneem ;
Murao, Koji ;
Imachi, Hitomi ;
Yu, Xiao ;
Li, Junhun ;
Wong, Norman C. W. ;
Ishida, Toshihiko .
ENDOCRINE, 2009, 35 (02) :233-242
[9]   Scavenger receptor class B type I localizes to a late endosomal compartment [J].
Ahras, Malika ;
Naing, Thet ;
McPherson, Ruth .
JOURNAL OF LIPID RESEARCH, 2008, 49 (07) :1569-1576
[10]   Inhibition of Acyl-Coenzyme A: Cholesterol Acyltransferase 2 (ACAT2) Prevents Dietary Cholesterol-associated Steatosis by Enhancing Hepatic Triglyceride Mobilization [J].
Alger, Heather M. ;
Brown, J. Mark ;
Sawyer, Janet K. ;
Kelley, Kathryn L. ;
Shah, Ramesh ;
Wilson, Martha D. ;
Willingham, Mark C. ;
Rudel, Lawrence L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (19) :14267-14274