Melting and Ejecta Produced by High Velocity Microparticle Impacts of Steel on Tin

被引:18
作者
Lienhard, Jasper [1 ,4 ]
Veysset, David [2 ]
Nelson, Keith A. [3 ]
Schuh, Christopher A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Chem, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
[4] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2021年 / 88卷 / 11期
关键词
high velocity impact; micromechanics; erosion; ejecta; melting; cratering; impact; plasticity; ADIABATIC SHEAR INSTABILITY; SLURRY EROSION; PLASTIC WORK; ADHESION; METALS; SPACE; MODEL; DEFORMATION; COEFFICIENT; PARTICLES;
D O I
10.1115/1.4051593
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
At sufficiently high velocities, a microparticle impacting a metal substrate can cause ejection of material from the substrate and impact-induced melting, both of which can result in erosion. Here, we directly image the impact of individual hard steel microparticles on soft tin substrates, at controlled impact velocities in the range of similar to 100 to 1000 m/s. By using scanning electron and laser scanning confocal microscopy, we characterize the surface morphology, depth, and volume of each impact crater. We observe a gradual onset of impact-induced melting in the craters, as well as the production of increasing amounts of ejecta from the target metal. By comparing measurements of impact and rebound velocity to an elastic-plastic model, we observe that at a high enough impact velocity, melting and ejection begin to consume additional kinetic energy beyond that expected by plastic deformation of the target material alone. By calculating the excess energy dissipation using this elastic-plastic model, we show that although this divergent behavior is associated with the onset of melting, the majority of the ejected volume must be solid rather than liquid.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Hypervelocity impact damage into space shuttle surfaces [J].
Bernhard, RP ;
Christiansen, EL ;
Hyde, J ;
Crews, JL .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1995, 17 (1-3) :57-68
[2]   Material damage in space from microparticle impact [J].
Berthoud, L ;
Mandeville, JC .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (11) :3043-3048
[3]  
Bitter J.G.A., 1963, Wear, V6, P5, DOI DOI 10.1016/0043-1648(63)90073-5
[4]   Experiments and engineering models of microparticle impact and deposition [J].
Brach, RM ;
Dunn, PF ;
Li, XY .
JOURNAL OF ADHESION, 2000, 74 (1-4) :227-282
[5]   Melting of Sn to 1 Mbar [J].
Briggs, R. ;
Daisenberger, D. ;
Salamat, A. ;
Garbarino, G. ;
Mezouar, M. ;
Wilson, M. ;
McMillan, P. F. .
23RD INTERNATIONAL CONFERENCE ON HIGH PRESSURE SCIENCE AND TECHNOLOGY (AIRAPT-23), 2012, 377
[6]   Space shuttle debris and meteoroid impacts [J].
Christiansen, EL ;
Hyde, JL ;
Bernhard, RP .
SPACE DEBRIS, 2004, 34 (05) :1097-1103
[7]  
Finnie I, 1960, Wear, V3, P87, DOI [10.1016/0043-1648(60)90055-7, DOI 10.1016/0043-1648(60)90055-7]
[8]  
Grant G., 1975, J AIRCRAFT, V12, P471, DOI DOI 10.2514/3.59826
[9]   Microparticle impact-bonding modes for mismatched metals: From co-deformation to splatting and penetration [J].
Hassani, Mostafa ;
Veysset, David ;
Sun, Yuchen ;
Nelson, Keith A. ;
Schuh, Christopher A. .
ACTA MATERIALIA, 2020, 199 :480-494
[10]   Material hardness at strain rates beyond 106 s-1 via high velocity microparticle impact indentation [J].
Hassani, Mostafa ;
Veysset, David ;
Nelson, Keith A. ;
Schuh, Christopher A. .
SCRIPTA MATERIALIA, 2020, 177 :198-202